
US007620664B2

(12) Ulllted States Patent (10) Patent N0.: US 7,620,664 B2
McGoveran (45) Date of Patent: Nov. 17, 2009

(54) COMPUTER-IMPLEMENTED METHOD FOR 4,769,772 A * 9/1988 DWyer 707/2

TRANSL ATING AMONG MULTIPLE 4,918,593 A * 4/1990 Huber 707/200
5,226,158 A * 7/1993 Horn et a1. 707/201

lslrllijlliggilljJirggTloNs AND STORAGE 5,247,665 A * 9/1993 Matsuda et a1. 707/101
5,455,945 A * 10/1995 VanderDrift 707/2

_ 5,493,671 A * 2/1996 Pitt et a1. 707/203

(76) Inventori DaVld O-MCGOVeFaII, 15905 Bear 5,551,027 A * 8/1996 Choy et a1. 707/201
Creek Rd., Boulder Creek, CA (US) 5,566,333 A * 10/1996 Olson et a1. 707/102
95006 5,590,324 A * 12/1996 Leung et a1. 707/5

5,594,837 A * 1/1997 Noyes 706/55

(*) Notice: Subject to any disclaimer, the term ofthis 5,615,361 A * 3/1997 Leung et a1 - - - - - - - - - - -- 707/3

patent is extended or adjusted under 35 5,701,453 A * 12/1997 Maloney et a1. 707/2
U S C days 5,701,466 A * 12/1997 YOIlg et a1. 707/100

' ' ' ' 5,717,924 A * 2/1998 Kawai 707/102

_ 5,734,887 A * 3/1998 Kingberg et a1. 707/4

(21) APPLNO" 11/649’089 5,870,739 A * 2/1999 Davis etal. 707/4

. _ 6,088,524 A * 7/2000 Levyetal. 707/3

(22) F11ed~ Dec-31,2006 6,578,028 B2* 6/2003 Egilsson et a1. 707/2
_ _ _ 6,591,272 B1* 7/2003 Williams 707/102

(65) Pm" Publlcatlon Data 2003/0028511 A1* 2/2003 Sluiman 707/1

US 2008/0010235 A1 Jan. 10, 2008 * Cited by examiner

Related US. Application Data Primary ExamineriYicun Wu
A ‘z [E ' iY Zh

(63) Continuation-in-part of application No. 10/ 114,609, “I3 an xammer u a0

?led O11 2, 110W Pat. NO. nt. . 1s1sac0m uter-1m emente met 0 ormana 1n trans
51 I C] Th' ' p ' pl d h df g' g

G06F 17/00 (2006.01) lating among, and understanding multiple representations
(52) US. Cl. 707/203; 707/1; 707/100; and storage structures of data by accessing and updating

707/101; 707/102; 707/103 R; 715/229 physical storage through a relational representation. The
(58) Field of Classi?cation Search None Present invention supports both data independence and ante‘

See application ?le for Complete Search history matic derivation of descriptions of data representations by
_ manipulating membership abstractions in the logical repre

(56) References Clted sentation, While the prior art is restricted to user-supplied

U.S. PATENT DOCUMENTS denotations and catalog entries.

15 Claims, 6 Drawing Sheets 4,514,826 A * 4/1985 Iwataetal. 707/7

<—> so 25

RDB

2a ‘ , CE 27

RDBMS ,1

US. Patent Nov. 17, 2009 Sheet 1 0f6 US 7,620,664 B2

FIGURE 1

US. Patent Nov. 17, 2009 Sheet 2 0f6 US 7,620,664 B2

<—> SC 25

RDB

23 ‘ D (E 27

RDBMS 21

FIGURE 2

US. Patent Nov. 17, 2009 Sheet 3 0f6 US 7,620,664 B2

Table 1

Table 2 29 35 Dependency

Trees
Tabie 3

31 RPS

SF (Operation 37

Authorizations)

SC 25

Figure 3

FIGURE 4

US. Patent Nov. 17, 2009 Sheet 4 0f6 US 7,620,664 B2

‘EMPLOYEE’ RELATION

ENUM ENAME ETITLE EDEPT EDEPTNAME

3 Bob Findlay C00 1 Corp. HQ

19 Rowena Chief Counsel 13 Legal
Hatchett

567 Saul Gelt Admin. Ass’t II 35 Shipping,
Colorado

1,424 Tee Yang Janitor I 256 Atlanta Field
Of?ce

US. Patent Nov. 17, 2009 Sheet 5 0f6 US 7,620,664 B2

Ready Ior Next Transaction

PRE-PFIOCESSING

Transaction steps remain

MODIFICATION

UPDATE VALIDATION

AFI'EFI IMAGE -

Transaction Steps are completed

FINAL VALIDATION

FIGURE 5

US. Patent Nov. 17, 2009 Sheet 6 0f6 US 7,620,664 B2

UPDATING A PROJECT JOIN
(ILLUSTRATION OF DELETE AND INSERT PHASES)

PROBLEM:

CREATE VIEW JOIN_EM (ENUM, EDEPT, MDEPT, MNUM) AS
SELECT E.ENUM, E.DEPT, M.DEPT, M.MNUM

FROM EMP E, MGR M
WHERE E.DEPT = M.DEPT

UPDATE JOIN_EM SET MNUM = 1, MDEPT : 2
WHERE ENUM = 5 AND EDEPT : 1 AND MNUM = 2

RESOLUTION IN PSEUDO-SQL"

Apply Delete Phase to MGR:
DELETE MGR

WHERE MNUM = 2 AND DEPT =1 AND
EXISTS (SELECT ENUM FROM EMP WHERE ENUM = 5 AND DEPT = 1)

Apply Insert Phase to MGR:
INSERT INTO MGR (MNUM = 1, DEPT : 2)

WHERE
EXISTS (SELECT MNUM FROM MGR WHERE MNUM = 2 AND DEPT = 1)

Apply Delete Phase to EMP:
DELETE EMP

WHERE ENUM = 5 AND DEPT = 1 AND

EXISTS (SELECT MNUM FROM MGR WHERE MNUM = 2 AND DEPT : 1)

Insert Phase Applied to EMP:
INSERT INTO EMP

(DEPT = 2

ENUM = 5,

ESAL : (SELECT ESAL FROM EMP WHERE ENUM = 5)) AND
EXISTS (SELECT MNUM FROM MGR WHERE MNUM = 2 AND DEPT = 1)

‘Notes:
1. All read operations read values trom the before image.
2. DELETE is applied beIore INSERT to any given relation, but all such ordered pairs of base
relation modifications proceed concurrently or in a manner that produces an equivalent effect to
concurrent operation.
3. "DELETE" and "INSERT" here are not identical to the SQL operations of those names

(see description oi algorithm).

FIGURE 6

US 7,620,664 B2
1

COMPUTER-IMPLEMENTED METHOD FOR
TRANSLATING AMONG MULTIPLE
REPRESENTATIONS AND STORAGE

STRUCTURES

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a continuation-in-part of Ser. No. 10/114,609, ?led
onApr. 2, 2002 now US. Pat. No. 7,263,512. This application
is ?led to continue the prosecution, separately, of the inven
tion described in the claims 1-8 beloW, and expressly incor
porates both beloW and by reference all of the original appli
cation’s speci?cation and drawings.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

DESCRIPTION OF ATTACHED APPENDIX

Not Applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention
Database accessing that supports identifying relations

amongst individual data elements (as distinct from the e?i
cient accessing of discrete, individual data elements) has
groWn in poWer and utility. Businesses are able to obtain
valuable neW business insights by using methods for access
ing and vieWing data that support combinations, re-combina
tions, or analyses of both existing data elements and struc
tures, combinations, or relations of said data elements.
Several major corporations (e.g. Oracle Corporation) have
shoWn that a relational database (“RDB”) and a relational
database management system (“RDBMS”) that enable more
?exible database accessing are valuable.

This invention primarily implements a methodology for
uniform handling of data elements, structures, and relations
denoted in and forming a relational database by the relational
database management system or by users thereof Without
requiring explicit and hardWare-dependent memory manage
ment, though it also handles the relations manipulated by and
in a relational database or by users thereof so as to optimiZe
query processing, table management, transaction handling,
and distributed or remote database maintenance.

2. Description of the Related Art
A Relational Database Management System (‘RDBMS’)

is a softWare system for creating, maintaining, and using a
Relational Database (‘RDB’). An RDB is a means for repre
senting data elements and operations on said data elements
via the relational model (or some variant on the relational
model such as the commonly available SQL packages),
Where the RDB as a Whole serves as a logical model for the
sub-portion of the real World instantiated in the RDB. The
RDBMS includes, among other elements, both a System
Catalog that contains the de?nitions of the logical model as
represented in the physical memory, and the respective deno
tations thereof Which serve as symbolic abstractions for the
relations and constraints comprising the RDB; and a Query
Language Processing Engine for executing relational request
(s) Wherein said requests contain certain alloWed processor
operations. The alloWed processor operations include logical
operations (e.g. ‘AND’, ‘OR’, ‘NOT’) and relational opera
tions (e.g., join, product, difference, divide, intersection,

20

25

30

35

40

45

50

55

60

65

2
restriction, projection, aggregation, union, grouping, and par
titioning); they may also include mathematical operations,
including both direct processor function calls and mathemati
cal algorithms (e. g. ‘PLUS’, ‘SUM’, ‘AVERAGE’); and
alloWed character, text, and graphical operations (e.g.
‘NAME’, ‘CHART’) provided for Within the RDBMS for
data input, manipulation, and output. The System Catalog and
its contents are accessible to, and are often modi?able by, the
Query Language Processing Engine. System Catalogs are
implemented in various forms, as is Well knoWn to those
familiar With the art. For example, the System Catalog may be
human-readable, compiled or otherWise embedded in pro
grammatic code, encrypted, stored as relations, may be static
or active, and so on. Either or both of the System Catalog and
the Query Language Processing Engine may be implemented
internal to the RDB, external to the RDB, or in some combi
nation of internal and external implementation.

There are numerous functionally equivalent symbolic
abstractions, Well knoWn to those familiar With the art, that
can be used for expressing and manipulating the semantics of
sets including, for example, those for set theory, predicate
logic, relational algebra, and relational calculus. A Set is a
collection of data elements, representable by and satisfying a
logical predicate (often referred to as a ‘membership func
tion’ or ‘membership criteria’), Wherein each data element
belonging to a set shares at least one property that is common
to its set’s members, yet uniquely distinguishes them from
any other data element not belonging to that set; and the
logical predicate satis?ed by each member describes the nec
essary and su?icient properties for belonging to that set. An
abstract symbolic expression such as a logical predicate
Which either fully or partially de?nes a set’s members is
referred to here as a Membership Abstraction. The logical
predicate contains one or more variable terms (‘predicate
variables’), each of Which may take values pertaining a prop
er‘ty of the set; and may contain one or more constant terms as
Well. Every element of a set is distinguished by some property
so that a particular element occurs at most once in any par
ticular set; every element is unique. The Relational Database
(‘RDB’) is a database Wherein the data is organiZed into roWs
(knoWn formally as ‘tuples’) Which are further grouped into
Sets knoWn as Relations, each said Relation having (either
implicitly or explicitly) a distinguishing property or proper
ties grouping a Set’s elements together and distinguishing
them from non-members; and the elements of the Set being
the roWs of the Relation. The standard instantiation of a
Relation is a table. The single-variable terms of the logical
predicate pertaining to the Set and Which the Relation repre
sents each refer to a shared property of the Set and are repre
sented by a column (also knoWn as an attribute) of the Rela
tion; the number of predicate variables in the logical predicate
is the number of columns in the Relation Which represents the
Set. The values Which a particular predicate variable may take
Within a variable term of the logical predicate are the permis
sible values of the Relation’s column; that is, each column is
de?ned as taking the values of a particular ‘domain’ (a set of
values), and the value of a particular column in a particular
roW being exactly one such value. Multi-variable terms in the
logical predicate contain only variables that are each indi
vidually represented by some column of the Relation. The
logical predicate must evaluate to ‘True’ on substitution of
each predicate variable therein With the corresponding values
in the columns of any particular roW of a Relation. Relations
typically have a time-varying membership; at any given time
only some subset of roWs belong to the corresponding Set of
all those that might per'missibly belong given solely the terms
of the logical predicate Who se Truth or Falsity depend only on

US 7,620,664 B2
3

recorded values of data elements. In order to capture the
time-varying aspect of Set membership, the logical predicate
may be considered as being augmented With a special con
stant term called an ‘assertion predicate’ by Which a suitably
authoriZed user may assert that a particular permissible mem
ber either does or does not belong to the Set. A relational
insertion operation thus corresponds to identifying the set of
Zero or more potential member roWs that satisfy some logical
condition or conditions and setting the value of the assertion
predicate to ‘True’ for these roWs; a relational deletion opera
tion corresponds to identifying the set of Zero or more mem
ber roWs that satisfy some logical condition or conditions and
setting the value of the assertion predicate to ‘False’ for these
roWs. In practice, no RDBMS implementation of insertion
and deletion operations have been manifestations of rela
tional insertion or relational deletion as de?ned above; often
the RDBMS implements roW by roW modi?cations (includ
ing deletion, insertion, or update) of the Relation; and the
RDBMS offers no explicit support for the assertion predicate.

The uniqueness of the roWs in the Set pertaining to the
Relation is determined entirely by the values in those roWs;
tWo roWs in a particular relation are not unique if the values of
corresponding columns are identical for every column value.
Each Relation is denoted by the RDBMS in a form that serves
as a symbolic abstraction that can be manipulated via rela
tional logic. In practice, most current RDBMS implementa
tions permit access and manipulation of ‘tables’ (the standard
instantiation of relations). Some tables are not strictly Rela
tions inasmuch as they permit duplicate roWs, roWs that con
tain unde?ned property values (often designated With special
markers called ‘nulls’), roWs With dissimilar semantics,
default values, and so on. The processing of requests involv
ing such tables is (1) less uniform than that for Relations, (2)
not prescribed by the relational model, (3) may result in
anomalous results not explicitly predicted by the relational
model, and (4) unique to the particular RDBMS implemen
tation.
A Relation is commonly knoWn to and represented Within

an RDB as a table having roWs and columns, and is a particu
lar type of Set Whose members are both roWs and satisfy both
(1) the logical predicate de?ning potential membership in the
Set and referencing no other sets, and (2) the assertion predi
cate, a predicate asserting that those members belong to said
Relation (i.e., are actual, rather than just potential, members
of the Set). A Relation Predicate is the logical predicate
corresponding to a Relation and describes the necessary prop
erties for a roW to belong to the Relation. All roWs having said
necessary properties could, but need not be, members of the
Relation; While roWs With the necessary properties are poten
tial members of the Relation, if and only if these potential
members have also been asserted to be members of the Rela
tion by some suitably authorized user of the RDBMS.

For example, an ‘Employees’ Relation might have columns
for Employee Number (ENUM), Employee Name
(ENAME), Employee Salary (ESAL), and Employee Depart
ment Number (EDEPT). The ‘Employees’ relation Will have
a Relation Predicate Emp(x) that stands for the logical de?
nition of the Relation; e. g. ‘Emp(x)’ means that: ‘x is an
Employee AND x has been assigned Employee Number
ENUM AND x has Employee Name ENAME and x earns
Employee Salary ESAL and x Works in Department Number
EDEPT’. The actual members of the ‘Employees’ Relation
are those roWs that have been entered into the RDB, and
therefore both have the properties speci?ed by Emp(x) and
have been asserted to belong to the Relation ‘Employees’.
(Note that x is a symbol representing an arbitrary entity com
monly referred to as an ‘employee.’)

20

25

30

35

40

45

50

55

60

65

4
In practice, the Relations in an RDB are most often de?ned

implicitly, With roW membership in a Relation being speci?ed
on a combination of user assertion and satisfaction of Con
straints. Most RDBMS’s use Constraints to manage their
data. (Date & McGoveran, “HoW to Avoid Database Redun
dancy”, Database Programming & Design, Vol. 7 No. 7, July
1994, p. 46, 48.) A Constraint is a condition that the RDBMS
tests against for a truth value; it is also a means for ensuring
the RDB’s integrity, as a Constraint is used to ‘constrain’ the
RDB’s data and Relations to those permissible (according to
the designers and builders) and according the proper interpre
tation of the RDB’s meaning. Constraints are de?ned, clas
si?ed (e. g., domain, column, roW, relation, or multi-relation),
enforced, maintained, and accessible to the RDBMS. Each
Constraint may be expressed as a logical predicate or its
equivalent, and so denoted Within the System Catalog as a
symbolic abstraction. Domain constraints are used to deter
mine Whether a data element belongs to a given domain. (E.g.
is the value represented a character? a number? A computer
distinguishes betWeen the numeral ‘1’ and the number ‘1’,
betWeen the letter ‘x’, a potential but undetermined set mem
ber ‘x’, and a variable ‘x’.) A column constraint (also knoWn
as an attribute constraint) requires data elements Within a
particular column to belong to a speci?ed domain (i.e. valid
entries are those possessing a speci?c attribute; e. g. American
salary values are in ‘dollars’). A particular relation constraint
limits membership in a particular Relation (all members of
this Relation satisfy the conditions of the constraint). And
multi-relation constraints, also referred to sometimes as
‘database’ constraints, are conditions Which must be satis?ed
by multiple relations. A referential integrity constraint is a
particular type of database constraint. Within a transaction,
RDBMS programs may check to see Whether domain, col
umn, and relation constraints are satis?ed after each indi
vidual, subordinate operation, but must check multi-relation
constraints after all operations on the referenced tables are
completed (since a failure after an intermediate operation
might be corrected by a subsequent operation on one of the
referenced relations). In practice, the combination of explic
itly de?ned constraints knoWn to and enforceable by the
RDBMS is incomplete in that it does not completely de?ne
the membership of the Relation, requiring a combination of
extreme care on the part of the user and external ?ltering of
attempted updates using, for example, application programs.
In practice, errors due to incomplete or inaccurate implemen
tation of constraints are common.
RDB designers and users could refer to the logical descrip

tion of a Relation Within the RDB by using a Relation Predi
cate. (Date & McGoveran, “Updating Joins and Other
VieWs”, Relational Database Writings 1991-1994 , Part II,
Chapter 6, pp. 267-284.) A Relation Predicate is a portion of
the logical predicate for the Set Which the Relation represents,
including all terms of that logical predicate excepting the
assertion predicate. A Relation Predicate properly expresses
the correct (as asserted by the RDBMS’s user) interpretation
of a relation; i.e. it is the expression of the ‘meaning’ of the
Relation. By extension, it is the expression of the ‘meaning’ of
a table in that RDB insofar as the meaning of that table may be
made unambiguous. The Relation Predicate Will join together
the logical and relational predicates that constrain the rela
tion’s data, and alloW the user to understand them. For
example, a one-roW, three column Table ‘Date’, With values
‘01’, ‘01’ and ‘02’ uses three domain constraints (numeral,
numeral, numeral), three column constraints (month, day,
year), and one relation constraint (dates in the current cen
tury), to enable a proper interpretation of these values as “Jan.
1, 2002”. At least that Would be the interpretation until the

US 7,620,664 B2
5

year 2100, When the default meaning could reasonably
become “Jan. 1, 2102”, The Relation Predicate for ‘Date’ can
be expressed as ‘E(x, y, Z), x is a member of Months, y is a
member of Days, Z is a member of Years’. ‘Months’ and
‘Days’ and ‘Years’ are domains having logical predicates that
are further de?ned, e. g., x is a member of domain Numerals &
‘1<q<:12’; y is a member of domain Numerals &
‘ 1<:y<:31’; Z is a member of domain Numerals &
‘1999<Z<2100’. The Relation Predicate for ‘Date’ might also
include a set of conjuncts properly constraining the value of
‘Days’ according to the value of ‘Months’, eg ‘if x:1 then
y<:31 ’ & ‘if x:2 then y<:29’, and so on. Furthermore, the
Relation Predicate for ‘Date’ might constrain the value of
‘Days’ according to the values of ‘Years’ and ‘Months’ so as
to account for leap years, eg ‘if x:2 & Z modulo 4:0 then
y<:28’. The logical conjunction of these constraints de?ne
the Relation ‘Dates’ and any data contained therein. In prac
tice, no RDBMS implements an algorithm for creating or
capturing Relation Predicates, extensions to the System Cata
log to store Relations Predicates, or means to use Relation
Predicates for any purpose.

In broad terms, an RDB is a logic-based model of truths
asserted about the real World, and the RDBMS is the means
Whereby that model, and its logic, is manipulated and main
tained Within the computer’s physical reality (and limita
tions). These truths include discrete, atomic, data elements
and combinations established by the RDBMS’s designers,
builders, and even users. The value of an RDB derives from its
capabilities for logic-based recombination and manipulation
using the ‘relational model’ and Working With and through
Relations; that value is signi?cantly and negatively affected
by anomalous or non-uniform or unpredictable behavior, and
especially as regards updates or other operations on relations.

Current RDB’s distinguish betWeen Base Relations and
Derived Relations.A Base Relation is one Where the RDBMS
maintains a direct corollary betWeen the physical organiZa
tion of the computer’ s memory and the logical organiZation of
a Set’s elements. A Derived Relation is a representation of a
Set Whose members are logically derived from, and represent
a combination from, those members of other Sets that further
satisfy the logical predicate that both details the necessary
and minimal properties of the derived Set; it Will also have
(either implicitly or explicitly) both a logical and relation
predicate that distinguishes those elements from others Which
lack those necessary and minimal properties, assertion of
belonging to the Derived Set, or both. In practice, a Derived
Relation is de?ned by relational and logical operations on
other Relations, any of Which may themselves be Derived
Relations. A Derived Relation may also consist of data ele
ments Who are stored in physically-separated portions of the
computer’ s memory. Derived Relations may be any of several
types, e.g., VieWs (de?ned beloW), materialiZed vieWs, ‘snap
shots’, replicas, and query results. Derived Relations are par
ticularly valuable because the assertion of belonging can arise
implicitly though the computer’s logical recombination and
analysis of Base Relations, rather than depending entirely on
human input.

There are many Ways to combine the roWs and columns of
Base Relations. Also, a Derived Relation may be de?ned or
created via a relational expression that references any com
bination of Base Relations, other Derived Relations, or both
Base and Derived Relations. In such combinations, each of
the referenced relations in the combined relational expression
is knoWn as a Source Relation for the combination Derived
Relation; the Derived Relation is sometimes referred to as the
Target Relation; and the Derived Relation is Dependent upon
its Source Relations. Most users, hoWever, deal not With the

20

25

30

35

40

45

50

55

60

65

6
Base Relations as such, but Work from and With their limited,
often query-driven, report-driven, or softWare application
driven vieW into a RDB.
A VieW is an named relational and logical expression rep

resenting data that is made visible to the user in a form that is
usually different from the form of the Source Relations and
convenient to a particular use or uses, i.e. it is the user’ s ‘vieW
into the relational database’s contents’. A VieW has a Rela
tional Predicate (and thereby expression in the relational cal
culus, relational algebra, and predicate calculus). A VieW can
be understood as a ‘virtual relation’, because the data belong
ing to a View need not be explicitly stored in the RDB as a
distinct table; in fact, a VieW may represent one or more
relational operations on a single relation or on a plurality of
relations. The data belonging to a VieW is derived from data
belonging to one or more other relations When the VieW is
manipulated by name in relational expressions, and is tran
sient in the sense that it does not exist if the data belonging to
those other relations does not exist.

VieWs are one expression of a Derived Relation, as stated
above. VieWs differ from other types of Derived Relations in
that Views are named virtual relations With a storage-persis
tent de?nition (at least until the VieW is explicitly destroyed or
‘dropped’) and so may be manipulated by authoriZed users
(other than the creator of the View) through reference to that
name in relational expressions and at arbitrary times.A Mate
rialiZed VieW is a type of VieW; the data as seen through the
VieW is made storage-persistent and modi?ed only When the
Source Relations are modi?ed.
Most RDBMS implementations explicitly maintain and

track Dependencies (Whether (1) betWeen relations or (2)
betWeen groups of columns of a relation), With these Depen
dencies de?ned, denoted as symbolic abstractions, and acces
sible to the RDBMS. In practice, this is usually done for
relations as referential integrity Constraints, or View Depen
dencies, but not betWeen non-vieW derived relations and their
source relations.

For example, the ‘Employees’ Relation (as de?ned above)
and a ‘Departments’ Relation (consisting of Department
Number DNUM, Department Name DNAME, and Depart
ment Manager’s Employee Number MNUM) might be Base
Relations. These tWo relations may be considered to be a Base
Set. From the Base Set individual relations can be combined
via relational operations to form one or several Derived Rela
tions. A Derived Relation called ‘Managers’ might be de?ned
as consisting of columns Department Manager’s Employee
Number MNUM, Department Manager’s Name ENAME,
and the Department Name DNAME of the department man
aged by the manager. ‘Managers’ is the result of performing a
relational join of the ‘Employees’ and ‘Departments’ Base
Relations, With the additional Constraint that
‘MNUMIENUM’. ‘Managers’ is said to have a ‘depen
dency’ on both ‘Employees’ and ‘Departments’.

‘Managers’ might, for example, be a VieW. As a named
expression, its de?nition can be stored in memory and can be
reused by referencing ‘Managers’ even though the actual
roWs of ‘Managers’ are created only at execution time, and are
based on the then-current roWs in the Base Relations (‘Em
ployees’ and ‘Departments’). Alternatively, the de?nition of
‘Managers’ might be an internal Derived Relation represent
ing a sub-step to a query asking to see all ‘V1cePresidents’
Wherein the latter are de?ned as those Whose employees are
themselves all ‘Managers’; While ‘V1cePresidents’ is dis
played to the user, the interim Derived Relation of ‘Manag
ers’ may Well not be. (Currently, most RDBMS programs do
not provide a Way to name the Derived Relations that result
from runtime query execution).

US 7,620,664 B2
7

If the only relations Which users of a RDBMS (or computer
programs) can access are Derived Relations, then these
Derived Relations, either directly or indirectly, form the link
age betWeen the physical location and structure in the com
puter memory and the descriptive (as expressed, for example,
by the conceptual or logical schemas) location and structure
in the RDB, handled by the RDBMS. In practice, an RDBMS
most often predeterrnines a signi?cant portion of physical
location and structure in the computer memory of Base Rela
tions. If all operations (including access and update) that are
valid for Base Relations are likeWise valid for Derived Rela
tions, the linkage attains maximum ?exibility; it then permits
modi?cation of the set of relational expressions Which de?ne
the set of Derived Relations in such a Way as to leave the roWs
and columns of each of those Derived Relations unchanged,
despite structural reorganization of the set of Source Rela
tions (even When those Source Relations happen to be Base
Relations) so long as the information necessary to the cre
ation of those Derived Relations is preserved. This property is
knoWn as Data Independence and it is intended to be a key
value to relational (as opposed to other) databases. It is also,
hoWever, badly limited When Base and Derived Relations are
not handled in a uniform manner as, for example, When some
Derived Relations cannot be updated in the same manner as
Base Relations.
RDBMS programs have four fundamental functions that

are used to manage all data modi?cation operations on rela
tions; these are respectively Insert, Delete, Update, and
Retrieval. The ?rst three of these are used independently. The
Insert operation alloWs neW data to be entered into a particular
relation. The Delete operation alloWs existing data to be
removed from a particular relation. And the Update operation
changes one or more data elements Within a particular rela
tion. The fourth function, Retrieval, is used to locate, manipu
late, and produce the data in the RDB and may be used either
independently or in combination With one of the other three.
Other processing (logical, relational, arithmetic, or transfor
mational) may be used to further facilitate changing data, its
presentation to the user, or the nature of the RDB . An RDBMS
Which has Data Independence Will alloW any of these four
functions to take place Without the user having to be con
cerned With the physical storage of the data or With the struc
ture of the RDB. A recogniZed major goal for all RDBMS
designers, users, and creators is increasing Data Indepen
dence.

Existing RDBMS programs alloW accessing some combi
nations of derived data in static, report-only vieWs, and alloW
updating particular combinations of physically stored data;
but the current state of the art differentiates betWeen base and
derived relations, asserting, believing, or holding that the
latter are inherently not updateable. Also, existing RDBMS
programs are plagued by unpredictable and non-intuitive fail
ures in updating derived data; these failures can require a
‘rollback’ Which, if not performed correctly, can leave the
database in an inconsistent state. In practice, the updating of
derived data is generally avoided. Additionally, because of
this differentiation betWeen base and derived relations, the
creation, maintenance, and merging of multiple physical
databases, even When logically feasible, is often pragmati
cally dif?cult, costly, effortful, infeasible, or just deemed
impossible.

Relational databases use data elements and the relation
ships betWeen them to model a portion of the World. In prac
tice, the data elements are organiZed at the logical level into
relations, and are perceived as such by the user. (Date, An
Introduction To Database Systems, 6”’ Edition, Addison
Wesley, 1995, Ch. 3, p. 52; Addison-Wesley; ISBNO-20l

20

25

30

35

40

45

50

55

60

65

8
54329-X.) The RDB does not integrate the denotation,
expression, and instantiation of a relation such that the model
is clearly linkedboth to the stored tables and the data elements
by means accessible to both the user(s) and the RDB or
RDBMS. A relation’ s title (its denotation or referent) is either
chosen by the designer or created by the system. Optimally, it
should convey some meaning to the user in the manner of a
mnemonic. It may have come from an entity-relationship
modeling or CASE tool. It may consist of some concatenation
of source table titles according to pre-set rules (eg the table
combining EMPLOYEE and 401K_PLAN_MEMBERS
may be titled EMPLOYEEi401K_PLAN_MEMBERS).
But the RDB and RDBMS currently do not have a direct tie
betWeen the relation, its title or denotation, and the logical
model, and the denotation is not separably manipulable
according to predicate logic as a symbolic abstraction for the
relation itself, or as a symbolic abstraction of the manipula
tion of the data elements and their combination therein. More
over, constraints, rather than being treated equally as logical
predicates are generally referred to simply as constraints, and
they may have been de?ned as relational expressions; they
have usually been separately maintained at the users discre
tion and as SQL “relational” expressions that are used only to
preclude updates rather than enable them.

This distinction and lack of functional relationship
betWeen denotation (the title), expression (the title as name),
and instantiation (the data elements comprising the stored
table), prevents effective symbolic abstraction and requires
all logic-based manipulation to manage all of the individual
data elements, tying the RDB and RDBMS to the computer’ s
ability to manage its physical memory in Which those same
data elements happen to be stored and represented.

Furthermore, current relational database management sys
tems distinguish betWeen base and derived relations, and base
and derived data; that is, betWeen those relations or data
explicitly contained in the physically-demarcated memory
groupings denoted as the relational database’s ‘base tables’,
from those contained or expressed by temporary (often
query-driven) combinations of the base tables. These tempo
rary combinations are knoWn as the relational database’s
‘derived tables’. (Certain derived tables are also commonly
referred to in the literature as ‘vieWs’.) This is a self-imposed
handicap the ?eld has failed to recogniZe, due in part to an
earlier theoretical error.

This distinction limits an RDBMS’s capability to update
derived tables (relations or data); limits users’ access to
derived tables; and can create problems (in the form of dif?
cult, memory- or processor-expensive transactions, or unin
tended or unpredictable results) for those RDBMS that try to
access or update derived tables (some do, some just don’t).
This distinction also can cause a RDBMS to use extra

memory in duplicating base data elements inside multiple
tables. Existing methods to manage updates or access to
derived tables can create potentially contradictory data sets,
creating major problems for the RDBMS and potentially
rendering the RDB itself unreliable.

Furthermore, distinguishing betWeen ‘base’ and ‘derived’
tables (and therefore base and derived relations) means that
no such RDBMS permits full data independence betWeen a
data expression and the memory location corresponding to its
physical storage, or uses uniform semantics With all opera
tions, including derived as Well as base data expressions. An
RDBMS possessing full logical data independence is one in
Which (I) the descriptive representation of the data in the
database can be changed to accommodate additional types of
data, supporting neW programs that Will use that data While
still maintaining the existing descriptions for previously-ex

US 7,620,664 B2

isting programs and users; and, (2) multiple descriptive rep
resentations can be provided, each specialized for a particular
group of users or programs, each Without implying any need
to alter existing elements of physical storage subject to the
constraint that all representation changes are information pre
serving. The lack of full logical data independence in turn
creates problems With merging relational databases, distrib
uting a relational database over multiple locations, and han
dling multiple versions of a relational database (either over
time or locations separated by message time), Which means
that users often ?nd neW versions of a relational database
become non-backWard-compatible With the pre-existing ver
sion, Which defeats one of the principal goals of using a
relational database. Furthermore, the lack of uniform seman
tics for both base and derived relations can cause failures to
certain updates, creating extra relational database system
maintenance and requiring rollback of transactions.
FeW existing RDBMSs provide means to update derived

relations; those that do, do so only for an arbitrarily restricted
feW derived relations (Date & McGoveran, “Updating Union,
Intersection, and Difference VieWs”, Database Programming
& Design, Vol. 7 No. 6, p. 46). These means for updating
derived relations are very restrictive, are tied to the physical
memory usage of the RDB, are inconsistent With those used
for base relations, and their use often results in error messages
sent to the user of the RDBMS. Users compensate for these
restrictions by avoiding the use of derived relations, develop
ing programs to provide update of speci?c derived relations,
or through manual Workarounds. For example, IBM’s DB2
and Oracle’s Oracle 9i RDBMS products do not permit
update of any derived relations (speci?cally VieWs) When the
update’s SQL uses the SQL keywords ‘DISTINCT’,
‘GROUP BY’, or ‘ORDER BY’. There are many other
restrictions on updating vieWs such as those that are derived
via relational aggregation and UNION. Only a subset of those
vieWs derived via join operations can be updated by Oracle;
DB2 does not support join vieW updates at all.
No RDBMS products support general update of all non

vieW derived relations, though some provide partial update
support of materialized vieWs, snapshots, or replicas. And, for
those Which provide some support, that support is extremely
restrictive. Despite the need, there are no RDBMS products
providing a common and intuitive method by Which all rela
tions (base and derived) can be updated (Date & McGoveran,
“HoW To Avoid Data Redundancy”, Database Programming
& Design, Vol. 7 No. 7, p. 46, July, 1994; Date & McGoveran,
“Updating Joins and Other Views”, Database Programming
& Design, Vol. 7 No. 8, p. 43, August 1994). Since all
RDBMS implementations distinguish betWeen updating base
and derived relations, users must learn the particular behavior
of the RDBMS for each type of derived relation, and must be
aWare of and can easily determine Whether or not a particular
relation that they Wish to update is a base relation or a derived
relation; and this restriction further violates logical data inde
pendence and forms an impediment to physical data indepen
dence.

Additionally, treating base relations as stored tables pre
vents attaining a major goal of physical data independence,
that of separating Where and hoW a table is stored from
manipulating the logical representation for the table’ s instan
tiation. Symbolic abstraction of the logical representation and
user requests into relational predicates alloWs for rapid logi
cal manipulation to be separated from the mechanics of man
aging the physical memory, Which otherWise limit the speed
and poWer of the RDBMS. Currently, an RDBMS at best
clumsily handles its oWn internal representations, lacking
means for symbolic abstraction of the model to Which it has

5

20

25

30

35

40

45

50

55

60

65

10
been designed and built, and Which it uses. The lack of such
abstraction being available to the RDBMS increases the
RDBMS’s dif?culty in distinguishing betWeen errors caused
by logical inconsistencies, data errors, and memory limita
tions.
As no RDBMS maintains Relation Predicates for the rela

tions or tables in its system catalog, separating out logical and
data processing (e. g. for optimization purposes alone) is dif
?cult. Although almost every RDBMS provides support for
using constraints in managing and enforcing the consistency
of an RDB, no RDBMS uniformly and consistently maintains
constraints in its system catalog as Relation Predicates, and
makes them accessible to the RDBMS or readily apparent to
users. Users, Who Would bene?t from having a uniform
method by Which to understand the meaning of a table When
a particular constraint is applied to that table, are thus liable to
misinterpret the data in a table, to access a table With a
different meaning than the one intended, or to use a table in a
manner inconsistent With its meaning. Each of these may lead
to corruption of data When the RDB is subsequently updated,
or may cause the user to make incorrect business decisions.

Although SQL uses expressions involving predicates for
access and update of relations, no RDBMS provides a uni
form and consistent method of accessing or updating rela
tions, in Which the semantics or meaning of that access or
update is based on and expressible in relational predicates;
these might be referred to respectively as an ‘Access Predi
cate’ and an ‘Update Predicate’. Use of such an ‘Update
Predicate’ Would also help ensure consistency and ease main
tenance for both the RDB and RDBMS, particularly if these
Were both contained Within the scope of, and accessible to, the
RDBMS. The operations of the RDBMS Would be easier to
maintain, optimiZe, or track if there Were means for classify
ing portions of an ‘Update Predicate’ into one or more rela
tional expressions, each of Which either (1) constrains the
logical consistency or other effects of the update action, or (2)
restricts the data that is to be affected by the update operation,
for this classi?cation Would help determine hoW the RDBMS
Will manage the update.
The continued linkage betWeen physical location in com

puter memory and descriptive location in the database by the
database system, such as found in IWata, K. et. al. US. Pat.
No. 4,514,826, and Matsuda, S. et. al. US. Pat. No. 5,247,
665, is an approach that, because it is based in Whole or in part
on information Which the RDBMS does not explicitly have
access to (an implied structure created and maintained by the
administrators, the terms of Which are either inaccessible or
meaningless to the RDBMS), prevents any RDBMS from
attaining either physical data independence, in Which the
descriptive representation of the data in the database is freed
from machine-speci?c and non-database terms and pro
cesses, or logical data independence.
The limited perception that uniqueness properties can be

determined for a database Was explicitly limited to a 1-tuple
condition in Leung, T. et. al. US. Pat. No. 5,615,361, because
of the separation betWeen a binding explicitly determinable
from the database system and that Which is actually present in
the database’s structure. This prevents the user from making
changes to the structure, organiZation, or contents of the
database except through indirect database system administra
tion, hinders the database’s actual capability to effectively
model the information contained Within it, and limits the
capacity to manage dependent relations or vieWs.
Much of the problem encountered by most RDBMS in

handling large databases has been the presence of ‘null’ ele
ments and columns required by any method that does not
effectively manage the data to limit unnecessary duplication,

US 7,620,664 B2
11

due to the inherent limitations of an implicit and non-repre
sented structure. The opportunity for improving database sys
tem performance identi?ed in Leung, T. et. al. U.S. Pat. No.
5,590,324 by exploiting column nullability is just a faint
harbinger of the improved administrability, performance
optimization, and prevention of update failures that can be
obtained When logical data independence can be guaranteed.
In many cases, support for logical data independence miti
gates or removes the need to support column nullability, and
therefore lessens and may even eliminate the need for special
optimization techniques such as those identi?ed therein When
column nullability is supported by the database system.

The apparatus-speci?c approach in Huber, V. U.S. Pat. No.
4,918,593 for maintaining dependence is explicitly limited to
certain derived columns of base tables. It makes neither pro
vision for derived tables nor discusses any generalizable
method independent of the speci?c data dictionary means for
maintaining dependence betWeen tables. The present inven
tion makes use of dependence betWeen tables, and need not be
maintained via any particular data dictionary means. Huber
makes no claim pertaining either to data independence or to a
general method for updating relations.

The value of separating logical and physical data structures
is evinced in Kingberg, D. et. al. U.S. Pat. No. 5,734,887,
Which fails in its approach to free itself of the need for explicit
tables, for both mapping the logical to physical combinations
and the explicit joins betWeen logical entity types and the
physical tables and columns under them. It further fails to
make the means for such mapping or the representation
explicitly accessible to the RDBMS. Kingberg requires the
use of a ‘logical data interface’ for access to base relations
from application programs Without explicitly referencing
those relations; the approach does not provide a method for
updating derived relations.

Only by using an extra stage of providing a completely
separate and independent object model does KaWai, K. U.S.
Pat. No. 5,717,924 manage to provide a link betWeen a rela
tional database schema and an object model for the informa
tion contained Within the database schema. Additionally, the
stages of managing and administering any modi?cations to
the database schema are not explicitly described in a fashion
that uses the logical structure of the schema, and the con
straints and processes contained by the relational database
system, to manage the modi?cations directly.
A different approach to the concept of managing relation

ships amongst base tables, one that consumes additional
memory resources and requires additional programming and
data entry, is speci?ed in Olson, M. et. al. U.S. Pat. No.
5,566,333. Olson requires a distinct linker table, does not
modify relational database or its contained data, and does not
address the problem of updates.

Pitt, J. et. al., U.S. Pat. No. 5,493,671, explicitly duplicates
the entirety of any merged data, and deals solely With data
type differences by direct conversion according to preset
means rather than any methodology contained Within an
RDBMS.

The desirability of alloWing logical access, independent of
knoWledge of the structure of the physical database, is
addressed in Maloney, C. et. al. U.S. Pat. No. 5,701,453.
Maloney is limited to table pairings, and the use of explicitly
overlapping ?elds, rather than being generalizable either to
logically possible combinations or to any representation
explicitly available to the RDBMS.

The value of dynamically displaying and updating data is
mentioned in Vanderdrift, R. Us. Pat. No. 5,455,945; hoW
ever, in that method the accessible data is limited to the
primary or base records, is not derived from any logical

20

25

30

35

40

45

50

55

60

65

12
representation of the database, and does not use the logical
constraints and representations of the database but rather
depends upon the creation of explicit management records
and memory pointers, and tracing them as necessary, thereby
increasing the complexity and memory requirements for the
system rather than lessening them through symbolic ab strac
tion. Moreover, the method therein does not provide a method
Which is consistent over data, relations, and constraints;
instead, it distinguishes betWeen a ‘management record’, a
function, a ?lter, and a ‘DD’ (display and organization rules).
And the method neither makes the method accessible Within
and to the RDBMS, nor uniform across data types, nor sepa
rate manipulating the data, functions, and records from pre
liminarily manipulating the logic to determine Whether and
hoW the changes are feasible.
The method identi?ed in Horn, G. et. al. U.S. Pat. No.

5,226,158, may assist in determining the validity of a particu
lar constraint; hoWever, it does nothing With such validity or
the constraint itself. Nor does the method therein alloW for
generalization to means for consistently managing base
tables, derived tables, and constraints, as Well as any particu
lar constraint.

RevieW of Certain RDBMS Mechanisms
There are many methods in the art by Which RDB updates

have been implemented. Relational updates are set transfor
mations, as contrasted With roW or record modi?cations. This
fact implies that updates are atomic, i.e., an unrecoverable
error of any type requires that the entire update be aborted.
Typically, updates are applied in the context of a transaction
so that atomicity is insured by a transaction manager or some
equivalent softWare component. The usual method by Which
either relational update or transaction atomicity is insured is
to make all updates to a copy of the data, leaving a copy
(knoWn as a ‘before image’) unmodi?ed. If an error occurs,
the un?nished modi?cations can be discarded and the RDB
restored to its original condition using the before image. If the
update completes successfully, the modi?ed copy (knoWn as
the ‘after image’) can be used to replace the before image.
This technique is often used in a nested fashion so that each
update Within a transaction has a corresponding before image
and after image, as does the entire transaction. Regardless of
the particulars of transaction management, the illusion is
given that the entire database is transformed from the publicly
available version of the data (before image) through a
sequence of private after images (each generally hidden from
other users) until the transaction completes. If it is successful,
the ?nal after image produced becomes the publicly available
version of the data. In practice, there may not be a physical
after image or before image, but only the appearance of one.
Many variations on the method of transaction management
exist, but are functionally equivalent to the one described
here. See Date, Introduction to Database Systems, supra, for
a more detailed explanation. The after images of tables modi
?ed by a transaction are often checked prior to completing the
transaction to determine consistency. Such constraint checks
may require reading other tables that have not been modi?ed
(i.e., have no after image) Within the context of the particular
transaction.

Methods for processing a request, Whether a data retrieval
or a data modi?cation, are generally referred to by the term
‘query processing’. The literature pertaining to query pro
cessing in an RDBMS is extensive and includes subtopics
such as query parsing, internal query representation, optimi
zation, and physical data access methods. A common internal
query representation technique is knoWn as a query tree, in
Which data access methods form the leaves of the tree and
successive nodes represent operations on the (possibly inter

US 7,620,664 B2
13

mediate) data. Operations are typically either unary or binary,
this being su?icient to represent all relational operators.
Every relational request and every predicate formula can be
represented by such a query tree as can the de?nition of every
relational view, since a relational view is de?ned as a named
retrieval operation on one or more relations.
A common and well-known technique for processing a

retrieval involving a view is to combine the query tree repre
senting the retrieval with the query tree that represents the
view de?nition. In order to use the technique, the RDBMS
must maintain dependency information in its System Cata
logithat is, information which relates the view to the rela
tions on which its de?nition depends. Because a view may be
de?ned in terms of relational operations on other views as
well as base tables, this dependency information is most
naturally stored in the form of a ‘dependency tree’ with leaf
nodes representing base tables and nodes above them repre
senting derived tables. Numerous data structures have been
used for storing dependency information, many of which are
equivalent to dependency trees in the sense that they are
capable of storing precisely the same information but differ in
the algorithms used to process that information. Some may
contain information in addition to dependency information.
Dependency trees are often used to process requests involv
ing views, including modi?cation requests. Most implemen
tations provide only limited support for view modi?cation
requests. Furthermore, most implementations use depen
dency information to propagate modi?cation requests as if
they pertained to individual rows of the view, or to substitute
the de?ning retrieval in place of each view reference so that
the request ultimately attempts to modify only base relations.
This well-known direct substitution technique, and its equiva
lent methods, result in valid modi?cations only for certain
types of views and such RDBMS implementations typically
restrict view updates to those for which it is known to be valid.

The meanings of objects in an RDB (domains, columns,
rows, base relations, and derived relations) in an RDBMS are
mo st frequently maintained through methods that are distinct
from both the maintenance of the RDB (such as the creation
of relations and views) and the processing of requests. For
example, object naming conventions, separate data dictionar
ies, “help” systems, and the like may exist that permit the
capturing of obj ect de?nitions, each of which requires manual
steps to create and maintain that are distinct from those steps
used to create or modify the object. Such de?nitions are
typically human readable, are not used by the RDBMS in
processing requests, and over time diverge from an accurate
representation of their corresponding operational de?nitions.
All too often, RDB creators and users rely upon object nam
ing to convey meaning, a practice that is unreliable, ine?i
cient, and cannot be used by the Query Language Processing
Engine.

Brief Summary of Current Literature in the Field

Research into the problem of updating derived tables has
been limited because of a theoretical misapprehension. One
of the theoreticians, in 1988, claimed to have proven that
updating views was potentially impossible, or at least that any
method that claimed to work for all views was subject to an
unpredictable failure. Buff (“Why Codd’s Rule No. 6 Must
Be Reformulated,”ACM SIGMOD Record 17:4, 1988) stated
a theoretical proof that a general algorithm for deciding
whether or not a view is updateable is undecidable within the
predicate logic. This paper has been the dominant and most
serious barrier to investigation of the problem of a general
algorithm for updating views, let alone arbitrary relations.

20

25

30

35

40

45

50

55

60

65

14
However, as Buff does not provide a proof of impossibility
within the relational algebra, nor show that the relational
algebra and the predicate logic are equivalent, he therefore
does not address the embodiment of the invention of this
application. Also, Buff never considered those limited imple
mentations of the relational algebra which are necessary to
reduce the relational model to practice on physical comput
ers; instead, his paper considers solely the pure mathematics
for abstract, theoretical algorithms.
One of the co-inventors was previously so persuaded of the

non-updateability of views by E. F. Codd (The Relational
Model for Database Management Version 2, Addison-Wes
ley, 1990), in which the author referenced his unpublished
algorithm (View Updatability in Relational Databases: Algo
rithm VU-1, unpublished, 1987) for determining whether or
not a view might be theoretically updateable. The referenced
algorithm was not, and has not been, reduced to practice, and
did not provide any method by which arbitrary views could be
updated. Furthermore, Codd does not teach that all views are
theoretically updateable, nor does he provide a method by
which arbitrary or even speci?c view updates are to be
achieved. Also, the view updates which Codd does describe
involve row operations and do not preserve the set semantics
of relational operations.

Dayal and Bernstein (“On the Correct Translation of
Update Operations on Relational Views”, ACM TODS 7:3,
1982) provided a formal treatment of view updating rules for
restriction, projection, and join views only. They did not
provide a general method for updating views or arbitrary
relations.

Keller (“Algorithms for Translating View Updates to Data
base Updates for Views Involving Selections, Projections,
and Joins”, Proc. 4th ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, 1985) presented criteria
for algorithms that would implement a limited class of view
updates, and multiple algorithms which satisfy those criteria.
A single, general purpose method was not presented (or sug
gested as even possible), and the semantics of the update
operation are not propagated to the base relations.
Nathan Goodman (“View Update is Practical”, InfoDB

Vol. 5, No. 2, 1990) proposed that the user, in de?ning a view,
be provided with a means for also specifying view-speci?c
methods of updating. No attempt was made to provide a
method by which arbitrary views can be updated; the problem
of updating derived relations other than views is not dis
cussed. Goodman did refer to well-known methods of updat
ing a few particular types of views using type-speci?c meth
ods which he recogniZed as not generaliZable. He also
identi?ed types of view which he contended required user
de?ned and type-speci?c methods for updating, denying the
possibility of a generaliZed algorithm.

Since the Nathan Goodman article, mo st of the literature on
“view updating methods” refers to the propagation of updates
from one or more source relations to a physically stored

derived relation, and how to most e?iciently manage physical
aspects of this operation. This has generally been referred to
as the problem of updating or managing ‘materialized views’.
It does not address the problem of updating a derived relation
and then propagating the appropriate changes to the source
relations; therefore, this body of literature does not bear upon
this application.
The ANSI (American National Standards Institute) has

published a standard for the syntax and some semantics of the
SQL query language; this query language is the one which
almost all RDBMS products support. The current (and forth
coming) version of the ANSI SQL standard states explicitly
that expressions involving updates of views are not legal

US 7,620,664 B2
15

expressions in the language except in a limited number of
speci?c cases. The semantics described for updating those
limited types of vieWs are, in general, inconsistent With the
semantics of updating base relations, resulting in a surprising
and non-intuitive behavior from the perspective of users.
RDBMS products that support SQL have been required by
market pressure to support the syntax and semantics de?ned
in the ANSI SQL standard; the ANSI SQL standard has been
and continues to be a barrier to developing (let alone imple
menting) approaches for general vieW updating.

C. I. Date (Introduction to Database Systems, 6th Edition,
Addison-Wesley, 1995, pp. 472ff) describes separate updat
ing procedures for each of certain types of vieWs, but fails to
introduce a general approach to updating all relations,
Whether base or derived; the possibility of updating certain
types of vieWs is explicitly denied. Also, Date provides sepa
rate procedures for various types of updates (for example,
insert, delete, or modify). The limits on vieW updatability
imposed by the ANSI SQL standard mentioned above are
discussed, Which may further have seemed to validate a mis
taken belief in the non-updateability of vieWs.

There is a need for maintaining and tracking, preferably by
a symbolic abstraction such as by means of relation predi
cates, the relationships or dependencies among a derived
relation and its source relations, so When a source relation is
changed the derived relation is also updated. Also needed is a
means to derive a relation predicate for a derived relation
from the combination of relation predicates for its source
relations, predicates for constraints on those relations, and the
predicates for the relational operations on source relations
used to de?ne the derived relation; once derived, it Would be
further desirable to make the same accessible to the RDBMS
and its programmers or even users. Also desirable Would be
means to decompose a relational expression involving a
derived relation into a logical combination of one or more
relational expressions, each of Which is either a relation predi
cate of a source relation or a predicate corresponding to a
constraint on one or more source relations. Such means

should permit successive decomposition of a relational
expression, so When the result of one step of decomposition
generates one or more relational expressions that themselves
involve a derived relation, each of these is further succes
sively decomposed, leading ?nally to a logical statement
Whose every element is either a relation predicate of a base
relation or a predicate corresponding to a constraint on one or
more base relations.
What is needed is a common and uniform method that can

(i) provide uniform symbolic abstraction of data, relations,
and constraints comprising an RDB managed by an RDBMS,
(ii) alloW bothusers and the RDB and RDBMS to use the most
effective of either logical manipulation of the symbolic
abstractions or manipulation of the same symbolic abstrac
tions’ instantiation to reason With and manage data elements
and relations, and (iii) provide access to or an update on an
arbitrary relational expression as a symbolic abstraction and
thence on the physically-embodied data and relations for
Which the symbolic abstraction stands, Whether the data and
relations referenced by that expression are vieWs, other types
of derived relations or base relations.

SUMMARY

The present invention is directed to a method that satis?es
this need (de?ned in the preceding Background section). The
method describes hoW a relational database management sys
tem can create and maintain relation predicates; and access
and update vieWs and relations in a relational database

20

25

30

35

40

45

50

55

60

65

16
through symbolic abstraction and Without having to distin
guish betWeen base and derived data; the method thereby
providing, to both the RDBMS and user, for derived tables
and data the same access and updating capabilities currently
provided for users or designers for base tables and data.

The embodiment of the invention explicitly (that is, Within
and accessible to the relational database management system)
catalogues denotations, Which are symbolic abstractions With
meaning for both the user and the RDB and RDBMS, Where
the denotations are descriptions of the instantiation of data
elements, relations and constraints managed by the system.
These denotations are expressed and manipulable as relation
predicates. The embodiment further explicitly makes these
relation predicates part of, accessible to, and manipulable by
the relational database management system, rather than
merely inherent in the relational database’s structure and the
separately-programmed rules managed by the relational data
base management system.
The embodiment further tracks dependencies for all

derived relations, processes relational operations on the RDB
through relational predicates, and links and queues validity
constraint checks run by the RDBMS to resolve at the appro
priate time, all separately from any physical, environmen
tally-dependent, computer and hardWare management con
cerns.

This embodiment of the invention enables maximum ?ex
ibility, minimum maintenance, and highest performance for
any relational database management system incorporating it.
It also frees users and relational database management sys
tems from many of the di?iculties of accessing and updating
derived tables, and makes such access and updating predict
able. If the design of the database is consistent With the strict
de?nition of relations as speci?ed by the relational model, it
also guarantees that such access and updating is consistent
With the relational algebra and happens in an intuitive manner.
This embodiment of the invention furthermore leads to a
minimal use of physical memory by a RDBMS by eliminat
ing logically-unnecessary duplication of base data elements.
(Security, communication, or hardWare requirements, con
cerns beyond the scope of the relational database manage
ment system though it must cope With their speci?c imple
mentation, may still drive some duplication.) This also
creates, in the preferred embodiment, provable, full data inde
pendence betWeen data and its physical storage for any rela
tional database management system incorporating the
embodiment of the invention, and provides uniform seman
tics for operations on base, derived, or commingled base and
derived tables, and data. It further provides improved consis
tency, maintainability, data integrity, and recoverability of
single or distributed relational databases, and ?nally provides
a Way to minimiZe relational database management system
maintenance and eliminate update-caused rollbacks.

The brief summary of the invention is provided so that the
nature of the invention may be readily comprehended. A more
precise and fuller comprehension may be obtained by refer
ence to the folloWing detailed description of the invention in
connection With the appended and associated draWings.

DESCRIPTION OF THE SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is an abstraction of a computer system incorporating
the preferred embodiment, With processing, memory, input/
output, and softWare sub-systems and means.

FIG. 2 is an instantiation of an RDB and RDBMS, With
subordinate features belonging to the latter of a System Cata
log (SC) and Query Language Processing Engine (QE).

US 7,620,664 B2
17

FIG. 3 is a more detailed vieW of the System Catalog, With
tables to store RDB details, including constraint de?nitions
for domains, columns, tables, and the database (i.e., multi
table constraints), Relation Predicates (RPs), Dependency
Trees, and operation authorizations (‘SF’).

FIG. 4 is an example of a relation expressed as a table.
FIG. 5 is a ?owchart of the main steps of the method

detailed beloW.
FIG. 6 is an example of an update operation in the preferred

embodiment.

DETAILED DESCRIPTION OF THE INVENTION

The method described in the claims beloW Works for and in
a Relational Database Management System (‘RDBMS’),
running on a computer having memory, a processor, and input
and output means. An RDBMS is a softWare program that
runs on the computer, using the latter’s memory and proces
sors for physically storing and manipulating data, and using
the latter’s input and output hardWare for translating betWeen
physical and logical representations and back again. This
softWare program includes an RDBMS as described in the
previous sections.

Implementation

This embodiment of the invention may be implemented in
a single computer, a distributed computer system, or in an
embedded-chip. The preferred embodiment comprises one or
more softWare systems designed for an SQL-based RDB and
RDBMS, containing a System Catalog (SC) and Query Lan
guage Processing Engine (QE). Alternative embodiments
implement either or both the SC and QE, or the entire inven
tion, external to the RDBMS, or in any internal or external
combination. In this context, a softWare system is one or more
softWare programs and associable hardWare memory (ran
dom-access, dynamic, static hard disk or disk array). A soft
Ware system should be understood to comprise a fully Work
ing software embodiment of one or more functions, Which
can be added to an existing computer system (to provide neW
or improved functionality) or to a neW general computer
system (to provide a special function computer system With
the softWare system’s incorporated functionality). SoftWare
systems are generally layered, as are RDBMS. The loWest
layer generally is an operating system (‘OS’) that manages
hardWare operations. Additional layers may provide speci?c
computational or processing functionality, a graphical user
interface, speci?c input/output capability for particular sci
enti?c or data acquisition or display hardWare, or inter-sys
tem communication and sharing capability (i.e. WAN,
INTERNET, or non-Wire-based, communications). These
softWare systems provide a foundation on Which additional
softWare systems can be built or changes made to the current
set.

A softWare system can thus be understood as a softWare
implementation of a function Which, When added to or
included Within a computer, provide neW, speci?c function
ality to a general-purpose tool. The software system for this
embodiment of the invention may be distributed by computer
usable media such as diskettes, CD-ROM or DVD disks, or
electronic signals over a remote connection (i.e. doWnloaded
over INTERNET-based electronic distribution). Also, it
should be understood that the interface betWeen one softWare
system and another meant to Work With it should be Well
de?ned and shared, and it should be understood in the context
of this embodiment of the present invention that delineations
betWeen softWare systems (e. g. RDBMS from RDB from OS)

20

25

30

35

40

45

50

55

65

18
are representative of the preferred embodiment. HoWever, the
invention may be implemented using any combination or
separation of softWare systems and hardWare.
The preferred embodiment of the invention comprises a set

of softWare systems for accessing and updating relations,
both base and derived, in a relational database. A single com
puter system incorporating the preferred embodiment is
shoWn in FIG. 1, Which includes a central processor 1, con
nected by means of a bus 3 to read only memory (‘ROM’) 5,
random-access memory (‘RAM’) 7, and static memory 9.
The static memory may comprise any of the folloWing, alone,
in combination, or their functional equivalent: hard disk, disk
array, ?ash memory, bubble memory, chip-based memory,
magnetic tape, optical disk. When the computer is operating
the method Will be part of the softWare systems (including the
RDB and RDBMS) stored in RAM and static memory
depending on the operating system’s memory management.
The computer system in FIG. 1 is also connected to both an
output system, Which comprises at least one display 11 or
other output device, by Which the computer presents infor
mation to the user, and at least one input system 13, Which
comprises at least one or more devices by Which data is input
to the computer, Which may include but are not limited to: a

keyboard, a mouse, a pointing device, a voice sensor, a
graphic input tablet, a touch screen, a touch screen overlay, a
joystick, a track ball, a light pen, a scienti?c data sensor, or a
numeric keypad. In computer’s memory are the RDB 15,
RDBMS 17, and softWare implementation of the method 19.

The computer system contains at least one RDB and
RDBMS (FIGS. 2, 21 and 23, respectively); to be useful, the
RDB must be ‘populated’ (i.e. having data elements entered
and relationships de?ned). The RDBMS contains an SC 25
that describes operations, elements, contents, and/ or structure
of the RDB accessible to the RDBMS, and a QE 27 that
de?nes operations performable Within the RDBMS. In the
preferred embodiment (FIG. 3), the SC includes tables 29
Which store, for example, constraint de?nitions for domains,
columns, tables, and the database (i.e., multi-table con
straints), Relation Predicates (RPs) 31, and Dependency
Trees 35 Which de?ne the dependencies betWeen Derived
Relations and their Source Relations, in addition to those
Which contain de?nitions of the physical and logical organi
Zation of those objects and operation authorizations (‘SF’) 37,
to protect against unauthoriZed or inadvertent alteration. The
SC may be fully integrated Within the RDBMS, may be a user
supplied augmentation of an existing SC, or may be a facility
external to the RDBMS (as, for example, external data ?les,
data dictionaries, information embedded in programs, and so
on, along With means to use the information contained therein
in an appropriate manner With the RDBMS). The QE accepts
requests in one or more query languages (e. g., SQL) via either
user input or programmatic interface. When a Relation (an
example Relation is shoWn in FIG. 4) is created or modi?ed
(e.g., by adding a constraint), the RDBMS derives and stores
the resulting RP in the SC. When a Derived Relation is cre
ated, the QE creates and stores a Dependency Tree along With
the de?nition of the Derived Relation in the form of both
query language text and the query tree.

This invention can be implemented entirely Within the
RDBMS or, in the alternative, may be separable and interface
With the RDBMS. This separation could take any of a number
of forms, With the method being a front end to the RDBMS, a
gateWay that sits betWeen the RDBMS and the user or appli
cation seeking to access the RDB, or as an augmentation to

US 7,620,664 B2
19

the RDBMS that is invoked from and by the RDBMS (via
triggers, exits, hooks, APIs, and the like).

Overview of Creation and Maintenance of Relation
Predicates

A Relation Predicate for a particular Base Relation consists
of the logical conjunction of the following:

each domain constraint over which an attribute (column) of
the Relation is de?ned;

each column constraint pertaining to an attribute of the
Relation;

each row constraint pertaining to rows of the Relation; and,
each multi-row constraint pertaining to rows of the Rela

tion.
A Relation Predicate for a particular Derived Relation,

where that relation is derived via relational operations (re
striction, projection, join, union, etc.) on one or two other
relations, is de?ned in terms of the Relation Predicates for
those one or two other relations as speci?ed in Table 1 below.
(In Table 1, R1, R2, R3, and R4 are arbitrary relations; PR1,
PR2, PR3, and PR4 their respective Relation Predicates; and
*PR2 is PR2 with speci?ed modi?cations. Also, P5 is an
arbitrary well-formed predicate, ‘AGGREGATE’ is any valid
aggregate operation, and ‘NAME’ is an arbitrary column
label.) The Relation Predicate includes as conjuncts any inde
pendently de?ned multi-relation constraints that reference
only the relations involved in the relational operation by
which the Derived Relation is formed. It does not include any
multi-relation constraints that reference a relation not
involved in the relational operation by which the Derived
Relation is formed. Just as arbitrarily complex Derived Rela
tions can be formed by successive combination using mul
tiple relational operations, the corresponding Relation Predi
cate can be derived by successive application of the
de?nitions or “rewrite rules” in Table l.

20

25

30

20
relation de?nition are modi?ed, and is eliminated, either lo gi
cally or physically, at such times as R1 is destroyed. Creation,
modi?cation, and destruction of Relation Predicates, collec
tively referred to as Relation Predicate de?nition updates,
may be triggered by, for example, signals received by the
RDBMS (or other suitable software component) from a suit
ably authoriZed user, alteration of appropriate portions of the
SC, or other means which will be well-known to those famil
iar with the art, any of which indicate that relations and
constraints have been created, modi?ed, or destroyed. In an
alternative embodiment, Relation Predicate de?nitions are
updated periodically. In a further alternative embodiment,
Relation Predicate de?nitions are updated as necessary and
appropriate when those Relation Predicates are needed for
some particular purpose.

In the preferred embodiment, the creation and modi?cation
of Relation Predicates is triggered by the creation and modi
?cation of relation and constraint de?nitions, and more spe
ci?cally by the storage of those de?nitions in the SC. (In an
alternative embodiment, the algorithm for creation and modi
?cation of Relation Predicates is an integral part of the algo
rithms for creation and modi?cation of relation and constraint
de?nitions, possibly resulting in the storage of the Relation
Predicate in the SC.) The SC contains one or more tables
which records the objects (columns, domains) upon which
each relation depends, and the set of such objects on which R1
depends is retrieved from the SC.

If R1 does not depend on other relations, the constraint
de?nitions which reference either R1 or these objects, includ
ing domain, column, row, and multi-row constraints, are then
retrieved from the SC, said de?nitions being stored in as
logical predicates, and each being logically conjoined.

If the R1 depends on one or more other relations, the
Relation Predicates for these relations and the query tree that
de?nes R1 are retrieved. The query tree is converted into a

TABLE 1

RELATIONAL RELATIONAL LOGICAL MULTI-RELATION
OPERATION EXPRESSION EXPRESSION CONSTRAINT

PRODUCT R2 PRODUCT R3 PR2 AND PR3
RESTRICT R2 RESTRICT P5 PR2 AND P5
PROJECTION R2 REMOVE COL-A *PR2[<all terms EXISTS (R2.COL-A)

involving COL- AND <all multi-column
A deleted>] constraints involving

R2.COL-A>
UNION R2 UNION R3 PR2 OR PR3
DIFFERENCE R2 MINUS R3 PR2 AND NOT

PR3
INTERSECT R2 INTERSECT R3 PR2 AND PR3
EXTEND EXTEND R2 ADD P5 AS PR2 AND P5

‘NAME’
‘AGGREGATE’ SUMMARIZE R2 BY PR2 AND FORALL R2.COL-A,

(COL-A) ADD P(‘NAME’) R4.NAME = ‘AGGREGATE’

‘AGGREGATE’(COL-B) (R2.COL-B) AND
AS ‘NAME’ R4.COL-A = R2.COL-A

A number of less-preferred embodiments would incorpo
rate different sub-sets of the de?nitions in Table 1. Some
might choose not to implement a column (for example, not
de?ning the rules for any Logical Expression); some might
not choose to implement a row (for example, not de?ning the
rewrites for the Relational Operation ‘EXTEND’).

In the preferred embodiment of the present invention, the
Relation Predicate for a particular Relation ‘R1’ is derived
and stored in the SC at the time R1 is created, is appropriately
altered at such times as the set of relevant constraints or the

60

65

nested, linear representation containing only unary and
binary relational operations (restriction, projection, product,
union, and so on) and relation references (e.g., relation name
or relation variable) as operands using means well-known to
those familiar with the art. Each operand and its correspond
ing operands form a relational expression and are replaced
with the corresponding logical expressions. In the preferred
embodiment, Table 1 above is stored (for example, in the SC,
embedded in the program, or other obvious means) and the
replacement accomplished by lookup in Table l and substi

US 7,620,664 B2
21

tution in the expression. The de?nitions of any multi-relation
(i.e., database) constraints that reference only those relations
already referenced Within the expression are also retrieved
(e. g., from the SC) and logically conjoined With the existing
predicates.

In the preferred embodiment, modi?cation of a relation
de?nition (e.g., adding a neW column), adding a neW con
straint, dropping an existing constraint, or modifying an exist
ing constraint may be handled by dropping the de?nitions of
any existing relation predicates that depend on the objects
referenced by that relation de?nition or those constraints and
creating those relations predicates again using the methods
described for creation of a relation predicate. In an another
embodiment, the affected portions of those relation predi
cates are appropriately either replaced With the appropriate
updated predicates or deleted; numerous means for identify
ing the dependant portions of a predicate and performing
expression substitution of those dependant portions With
updated versions are Well-known to those familiar With the
art.

For example, if the relation ‘Date’ discussed above is cre
ated, the SC Will then contain for ‘Date’ a symbolic represen
tation of the roW constraint ‘FORALL (x, y, Z) IN ‘Dates’, (x
IN ‘Months’) AND (y IN ‘Days’) AND (Z IN ‘Years’)’. The
SC Will also have a symbolic representation of the domain
constraints for ‘Months’ and ‘Days’ and ‘Years’ correspond
ing to ‘FORALL x in ‘Months’, (x IN ‘Numerals’) AND
(l<q<:l2)’; ‘FORALL y in ‘Days’, (y IN ‘Numerals’)
AND (l<:y<:3l)’; ‘FORALL Z in ‘Years’, (Z IN ‘Numer
als’) AND (1999<Z<2l00)’, Where ‘Numerals’ is a funda
mental domain in the sense that the RDBMS inherently
knows hoW to test membership for that domain given a par
ticular data value. The SC Will have a symbolic representation
of the roW constraints for ‘Date’ corresponding to a set of
conj uncts properly constraining the value of ‘ Days’ according
to the value of ‘Months’, e.g. ‘FORALL (x, y, Z) IN ‘Dates’,
(x:l IMPLIES y<:3l) AND (x:2 IMPLIES y<:29) AND
(etc.)’. The SC Will also have a roW constraint for ‘Date’
corresponding to ‘FORALL (x, y, Z) IN ‘Dates’, ((x:2) AND
(Z modulo 4:0)) IMPLIES (y<:28)’. These constraints are
retrieved from the SC and logically conjoined. After collect
ing terms, the resulting Relation Predicate for ‘Dates’ is:
‘FORALL (x, y, Z) IN ‘Dates’, (x IN ‘Months’) AND (y IN

‘Days’) AND (Z IN ‘Years’) AND ((x IN ‘Numerals’)
AND (l<q<:l2)) AND ((y IN ‘Numerals’) AND
(l<?/<:3l)) AND ((Z IN ‘Numerals’) AND (1999<Z
<2l00)) AND (x:l IMPLIES y<:3l) AND (x:2
IMPLIES y<:29) AND (etc.) AND (((x:2) AND (Z
modulo 4:0)) IMPLIES (y<:28))’

Similarly We might, for example, have determined that rela
tions ‘Employees’ With columns (ENUM, ESAL, EDEPT)
and ‘Departments’ With columns (DNUM, MNUM) and have
the Relation Predicates, E(x, y, Z) and D(u, v) respectively.
For clarity, We abbreviate uniqueness constraints or predi
cates, the form of Which is given in Table l, as ‘Unique(x)’.
E(x, y, Z) and D(u, v) are then, for purposes of illustration, as
folloWs:

‘E(x, y, Z):‘FORALL (x, y, Z) IN ‘Employees’, (x IN
‘Employee_Numbers’) AND (y IN ‘Salaries’) AND (Z
IN ‘Department_Numbers’) AND ((x IN ‘Numerals’)
AND (0<x<l00000)) AND ((y IN ‘Numerals’) AND (y
>0)’ AND ((Z IN ‘Numerals’) AND (0<Z<l000)) AND
Unique(x) AND (EXISTS(Departments.DNUM:Z)’

and
‘D(u, v):’FORALL (u, v) IN ‘Departments’, (u IN

‘Department_Numbers ’) AND ((u IN ‘Numerals ’) AND

20

25

30

35

40

45

50

55

60

65

22
(0<u<l000)) AND Unique(u) AND (v IN ‘Employee
_Numbers’) AND ((v IN ‘Numerals’) AND
(0<v<l00000)) AND EXISTS(Employees.DNUM:u)’

The Relation ‘Managers_Salaries’ With columns (DNUM,
MNUM, ESAL) is derived from ‘Departments’ and ‘Employ
ees’ by forming the product, restricting to those roWs for
Which (MNUMIENUM) and (DNUMIEDEPT), and pro
jecting DNUM, MNUM, and ESAL. The effect of three rela
tional operations are given in Table l and, on successive
application and rearrangement of terms, give the folloWing
Relation Predicate MS(u, x, y) for the Derived Relation
‘Managers_Salaries’:

‘MS(u, x, y):FORALL (u, x, y) IN (‘Employees’ PROD
UCT ‘Departments’), (x IN ‘Employee_Numbers’)
AND (y IN ‘Salaries’) AND (Z IN ‘Department_Num
bers’) AND ((x IN ‘Numerals’) AND (0<x<l00000))
AND ((y IN ‘Numerals’) AND (y>0)’ AND Unique(x)
AND

(u IN ‘Department_Numbers’) AND ((u IN ‘Numerals’)
AND (0<u<l000)) AND Unique(u) AND EXISTS
(Employees.DNUMq1)
AND

EXIST(Z) AND EXISTS(Employees(x, y, Z)) AND ((Z IN
‘Numerals’) AND (0<Z<l000)) AND (EXISTS
(Departments.DNUM:Z) AND EXISTS(v) AND
EXISTS(Managers(u, v)) AND (v IN ‘Employee_Num
bers’) AND ((v IN ‘Numerals’) AND (0<v<l00000))
AND

(xql) AND (Z:l.1)

Creating Augmented Derived Relation De?nitions

One objective of this method is to enable the RDBMS to
augment derived relation de?nitions With a computable map
ping betWeen the columns of the derived relation to columns
of the base relations on Which it is de?ned (‘Mapping’). The
mapping from source columns (‘x1’,‘x2,’, ‘x3’, . . . ‘xn’) to a
particular derived relation column (‘y 1’) may be represented
symbolically as a function ‘yFfl-(xl, x2, x3, . . . xn)’, this

de?nition of this function being given normally in the course
of de?ning the derived relation. In order to update a particular
source column (‘xi’) given a neW value of a particular derived
relation column, an inverse function de?nition (or its equiva
lent) is required and may be represented symbolically as a
function ‘xi:gl-(yj)’. In the case Where the derived relation is
created entirely from a relational operation on one or tWo
source relations, the relationship is just ‘XI-11’ (a ‘simple
map’). The set of inverse functions g:{gl.()j> provides a
method of computing the values of source columns from the
values of derived columns. Every derived relation may be
derived from repeated application of the relational operations
(each of Which is either unary or binary) on a ?nite set of
source relations, such a de?nition of the derived relation most
often being represented internally as a query tree.

In the preferred embodiment, the Mapping is fully deter
mined by the information in the query tree and depends on the
relational operations of restrict, product, union, set differ
ence, intersection, join, and projection. The method proceeds
from the base relations up through the de?ning query tree,
combining the columns of each source relation (‘Sl ’, ‘S2’) in
accordance With the relational operation designated by a node
of the tree to produce the derived columns of the derived
relation (‘D’) and therefore the function Which de?nes the
mapping betWeen a derived column and a particular set of
source columns. This details on determining this Mapping are
as folloWs.

US 7,620,664 B2
23

For each node in the query tree, traversing the tree from the
bottom up, the function is identi?ed that de?nes values of
columns of the derived relation in terms of values of the
corresponding source relations.

For each such mapping function, the corresponding inverse
function is then found:

(a) If the relational operation is a ‘restrict’ or ‘product’, the
columns of the derived relation map identically to those
of the source relations. Thus S.xl.:D.yj for each column
in each S. Additionally, if the relational operation is a
‘tWo-variable restrict’ sometimes called a ‘join condi
tion’ then both variables of the join condition map to the
same derived relation columns. For example, if
‘S1.xl:S2.x2’ and S1.x1:D.y2, then Sl.xl:D.y2 is added
to the map.

(b) If the relational operation is a ‘union’, ‘set difference’,
or ‘set intersect’, the columns of the derived relation map
to the columns of both the source relations. Thus, given
a value of a column D.yl-, S l.xl-:D.yi for each column in
S1 and S2.xi:D.yi for each column in S2.

(c) If the relational operation is ‘project’, then for each
column S2.xk in the source that is eliminated by proj ec
tion and for Which a default constant ‘c’ or default func

tion ‘def({Zl-})’ (Where {Z1} is a set of function argu
ments) has been de?ned, the map is de?ned as ‘ S2.xk:c’
or ‘S2.xk:def({Zl-})’.

This procedure results in each column of the ?nal relation
(represented by the root node of the query tree) being speci
?ed in terms of columns of the relations represented by leaf
nodes of the query tree, the function being given by function
composition (nested functions) as the tree is traversed from
leaves to root. Tree traversal is a common and Well-known
procedure to those skilled in the art With a number of readily
accessible programming methods enabling it. (E.g., see
Donald Knuth, The Art of Computer Programming Vol. 1,
Addison-Wesley, 1998, ISBN 0201485419)

The inverse function composition is then derived so that the
value of each column of a relation represented by a leaf node
of the query tree can be found given a value of one or more
columns of the relation represented by the root node of the
query tree. This derivation can come from, for example, a
pre-prepared table listing knoWn functions and their inverses,
from user entry, or from inductive function derivation (from
the function de?nition and possibly certain constraints), and
functional combination, all techniques being standard meth
ods Well-knoWn to those skilled in the art of computer pro
gramming.

In a ?nal step of the method, the Mapping so derived is
stored in the SC and indexed by, for example, derived relation
name, source relation name, and column name.

In an enhancement to the preferred embodiment, user sup
plied or system supplied names of columns (known also as
‘renaming’, or supplying a ‘column alias’ or ‘synonym’) are
taken into account in the mapping. For example, a vieW of the
‘Employees’ relation might be created restricting salaries to
those greater than $100,000. The user might then give the
column derived from the source column ‘ESAL’ a more

descriptive name such as ‘HIGH_SALARIES’. This
enhancement might be implemented, for example, by simple
substitution of the supplied name in the mapping in place of
the original column name or symbol, or by any of a number of
other methods that Will be obvious to those familiar With the
art.

In a further enhancement of the preferred embodiment,
computed columns are taken into account and the functional
relationship betWeen source columns and derived columns is
recorded as part of the mapping information. Computed col

20

25

30

35

40

45

50

55

60

65

24
umns are derived from one or more source columns by a

Well-de?ned computational procedure or function that is sup
plied by the creator of the derived relation at de?nition time or
by a subsequent modi?cation of that de?nition. For example,
multiplication by a conversion factor (12) might be used to
convert monthly salaries (‘ESAL’) in the ‘Employees’ rela
tion into yearly salaries in the derived relation. As a further
example using the same relation, salaries might be converted
from a numeric quantify into a character string and the con
stant string ‘$/Y R’ might be concatenated onto the end.

To complete the mapping betWeen derived relation col
umns and source relation columns When the derived column

is de?ned as a function of one or more source relation col

umns, the inverse of the computed column function must be
recorded or derived from the derived relation de?nition. In

one embodiment, the inverse function is computed automati
cally from the supplied function de?nition using, for
example, an equation solver or functionally equivalent soft
Ware means. In another embodiment, the inverse function
de?nition is determined by manual means (for example, sup
plied by a user such as the de?ner of the derived relation). In
a further embodiment, a combination of automatic and
manual means may be used. For example, manual means
might be used Where automated means for a particular func
tion Would be overly complex or computationally expensive.
Alternatively, automated means might be used Where deter
mination of the inverse function Would be too dif?cult or
unreliable for implementation via manual means. In yet a

further embodiment, an effective, alternative inverse function
may be supplied by manual means for column derivation
procedures that do not have a unique inverse function. In yet
a further embodiment, the combination of the current values
of the source and derived columns, the updated values of the
derived columns, and the functional relationships among
them (possibly including certain integrity constraints), are
used in conjunction With softWare means commonly knoWn
to those skilled in the programming arts, such as numerical
approximation techniques, constraint programming, matrix
algebra, linear programming, and the like, to determine
acceptable values of the updated source columns.

Major Steps of The Relation Update Algorithm

In the preferred embodiment of the invention, the funda
mental RDBMS modi?cation functions are handled uni
formly through an identical set of steps for each transaction,
including those Which modify the RDB directly, Whether
using the Relational Predicates to modify the structure or the
data elements to modify the contents. FIG. 5 is a ?owchart
shoWing an abstraction of the major steps of the method.
These steps are: (1) Pre-Processing (‘before image’ creation
or identi?cation, and preparation of the query language
request), (2) Reduction (creation of the Target Relation Predi
cate and reWriting the expression), (3) Modi?cation (updating
the ‘after image’ of the affected relations, an example of
Which is given in FIG. 6); (4) Update Validation (validate the
success of the update), and (5) After Imaging (saving the
current ‘after image’ of each affected Base Relation for sub
sequent processing), and (6) Final Validation (multi-relation
constraint checks). In the preferred embodiment recursive
rather than iterative repetition is used, particularly for travers
ing the query tree. Each of these is further described beloW,

US 7,620,664 B2
25

and they may be implemented in any language or using any
functional algorithm known to those skilled in the art.

Pre-Processing

The obj ective of Pre-Processing is to create or identify the
current ‘before image’ and to prepare the query language
request. If the query language request is the initial request in
a transaction, the current ‘before image’ is just the current
committed image of the database; otherWise it is identi?ed as
the most recent ‘after image’ of each Base Relation resulting
from previous modi?cation requests Within the current trans
action. Using methods Well-known to those familiar With the
art, the syntax of the query language request is validated via
the appropriate query language parser and all object refer
ences are validated. If there are syntactic or reference errors,
the parser handles the error in the usual manner for the par
ticular RDBMS (e.g., returning an error to the user or request
ing program).

If there are no errors, the parser generates an internal rep
resentation of the request Which, in the preferred embodiment
is a query tree.

If the operation associated With root node of the query tree
is a Retrieval function, the query tree is processed by the QE
(‘query engine’) using methods that Will be Well-known to
those familiar With the art.

If the operation associated With the root node of the query
tree is a modi?cation request function (e.g., a Delete function,
an Insert function, or an Update function), the function iden
ti?cation is saved, the target of the function is identi?ed (the
‘Target Relation’) and that relation denotation is pushed onto
the Target Relation Stack (‘TRS’).

The query tree is separated into tWo components, one rep
resenting the target relation (the ‘Target’) to Which the modi
?cation request is to be applied, and one being a query subtree
representing the source relation (the ‘Source Query Tree’);
the source relation may Well be, for example, a derived rela
tion, a base relation, or a relational ‘constant’. The Target is
simply the target relation reference identi?ed in the modi?
cation request, and in particular represents the ‘ after image’ of
the target relation. The Source Query Tree is separated into
tWo further subquery trees, one representing a relation that is
to be subtracted via set difference from the target relation (the
‘Delete Query Tree’) and one that is to be added via set union
to the target relation (the ‘Insert Query Tree’). Both the Delete
Query Tree and the Insert Query Tree represent retrieval
functions and each relation referenced Within them denotes
the current ‘before image’ of that relation, this being the ‘after
image’ of that relation resulting from the most recent modi
?cation request (if any) Within the current transaction and
otherWise the initial image of the relation as of the beginning
of the transaction. The Target, the relation produced on execu
tion of the Delete Query Tree (the ‘ Deleted Relation’), and the
relation produced on execution of the Insert Query Tree (the
‘Inserted Relation’) each have the same columns.

Reduction

The objective of Reduction is to obtain the Relation Predi
cate corresponding to the Target, create the Target Relation
Predicate, and to rewrite the expression so as to be able to
apply each appropriate portion of the derived source relations
(obtained by processing the Delete Query Tree and the Insert
Query Tree) to one of those Base Relations from Which the
Target is derived and in the subsequent Modi?cation Step.
The folloWing steps are performed:

20

35

40

45

50

55

60

65

26
The Relation Predicate corresponding to the Target (the

‘Target Relation Predicate’) is obtained from the SC by
lookup.
The Mapping betWeen the Target and each Base Relation

on Which it depends is obtained from the SC by lookup.
For each Base Relation referenced in the Target Relation

Predicate, all terms pertaining to that Base Relation are col
lected With all single predicate variable and constant terms
grouped together and all multi-variable terms grouped
together (‘Augmented Base Relation Predicate’).

For each Base Relation referenced in the Target Relation
Predicate, all multi-relation constraints that reference the
Base Relation are retrieved from the SC by lookup.

Modi?cation

The objective of Modi?cation is to apply the appropriate
portion of the Deleted and Inserted Relations to the appropri
ate Base Relation of those referenced in that Target Predicate.
The folloWing steps are performed:
The QE processes the Delete Query Tree and the Insert

Query Tree, creating Deleted and Inserted Relations respec
tively from the current ‘before image’ of the referenced Base
Relations. Either Deleted Relation or Inserted Relation or
both may be empty sets of roWs.

For each Base Relation in the Target Predicate:
(a) The portion of the Mapping relevant to the Base Rela

tion is identi?ed.
(b) The partition of the Deleted Relation corresponding to

those columns that map to columns of the Base Relation
is created (‘Deleted Partition’).

(c) The partition of the Inserted Relation corresponding to
those columns that map to columns of the Base Relation
is created (‘Inserted Partition’).

(d) As an optional step, any so-called ‘before actions’ trig
gered by the relevant update function may be executed at
this point.

(e) The current ‘after image’ of the Base Relation (‘Base
Relation AI’) is modi?ed through the relational opera
tion of set difference, by removing from Base Relation
AI the roWs in Deleted Partition. This substep is the
‘Deletion Phase’ for this Base Relation.

(f) The after image of the Base Relation (‘Base Relation
AI’) is further modi?ed through the relational operation
of union, adding to Base RelationAI the roWs in Inserted
Partition. This substep is the ‘Insertion Phase’ for this
Base Relation.

(g) The logical truth of the Augmented Base Relation
Predicate is determined for each roW in Inserted Parti
tion. If the value thus obtained for any roW is ‘False’, the
logical truth value of that Augmented Base Relation
Predicate Within the Target Relation Predicate is
replaced With the logical constant ‘(False)’ and other
Wise is replaced With logical constant ‘(True)’.

Update Validation

The objective of Update Validation is to process any post
update triggers and to con?rm that the attempted modi?ca
tions are consistent With the de?nitions of the relations and
any relevant constraints. For each Base Relation in the Target
Relation Predicate, any post update triggers (as, for example,
obtainable from the SC by lookup) on the Base Relation are
processed and applied to the appropriate ‘after image’.

Next, the Target Relation Predicate is evaluated for its
logical truth value, taking into account the truth values
obtained in prior steps, and any previously unevaluated multi

