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UPDATING A PROJECT JOIN 
(ILLUSTRATION OF DELETE AND INSERT PHASES) 

PROBLEM: 

CREATE VIEW JOIN_EM (ENUM, EDEPT, MDEPT, MNUM) AS 
SELECT E.ENUM, E.DEPT, M.DEPT, M.MNUM 

FROM EMP E, MGR M 
WHERE E.DEPT = M.DEPT 

UPDATE JOIN_EM SET MNUM = 1, MDEPT : 2 
WHERE ENUM = 5 AND EDEPT : 1 AND MNUM = 2 

RESOLUTION IN PSEUDO-SQL" 

Apply Delete Phase to MGR: 
DELETE MGR 

WHERE MNUM = 2 AND DEPT =1 AND 
EXISTS (SELECT ENUM FROM EMP WHERE ENUM = 5 AND DEPT = 1) 

Apply Insert Phase to MGR: 
INSERT INTO MGR (MNUM = 1, DEPT : 2) 

WHERE 
EXISTS ( SELECT MNUM FROM MGR WHERE MNUM = 2 AND DEPT = 1) 

Apply Delete Phase to EMP: 
DELETE EMP 

WHERE ENUM = 5 AND DEPT = 1 AND 

EXISTS ( SELECT MNUM FROM MGR WHERE MNUM = 2 AND DEPT : 1) 

Insert Phase Applied to EMP: 
INSERT INTO EMP 

( DEPT = 2 

ENUM = 5, 

ESAL : (SELECT ESAL FROM EMP WHERE ENUM = 5) ) AND 
EXISTS ( SELECT MNUM FROM MGR WHERE MNUM = 2 AND DEPT = 1) 

‘Notes: 
1. All read operations read values trom the before image. 
2. DELETE is applied beIore INSERT to any given relation, but all such ordered pairs of base 
relation modifications proceed concurrently or in a manner that produces an equivalent effect to 
concurrent operation. 
3. "DELETE" and "INSERT" here are not identical to the SQL operations of those names 

(see description oi algorithm). 

FIGURE 6 
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COMPUTER-IMPLEMENTED METHOD FOR 
TRANSLATING AMONG MULTIPLE 
REPRESENTATIONS AND STORAGE 

STRUCTURES 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This is a continuation-in-part of Ser. No. 10/114,609, ?led 
onApr. 2, 2002 now US. Pat. No. 7,263,512. This application 
is ?led to continue the prosecution, separately, of the inven 
tion described in the claims 1-8 beloW, and expressly incor 
porates both beloW and by reference all of the original appli 
cation’s speci?cation and drawings. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

Not Applicable 

DESCRIPTION OF ATTACHED APPENDIX 

Not Applicable 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
Database accessing that supports identifying relations 

amongst individual data elements (as distinct from the e?i 
cient accessing of discrete, individual data elements) has 
groWn in poWer and utility. Businesses are able to obtain 
valuable neW business insights by using methods for access 
ing and vieWing data that support combinations, re-combina 
tions, or analyses of both existing data elements and struc 
tures, combinations, or relations of said data elements. 
Several major corporations (e.g. Oracle Corporation) have 
shoWn that a relational database (“RDB”) and a relational 
database management system (“RDBMS”) that enable more 
?exible database accessing are valuable. 

This invention primarily implements a methodology for 
uniform handling of data elements, structures, and relations 
denoted in and forming a relational database by the relational 
database management system or by users thereof Without 
requiring explicit and hardWare-dependent memory manage 
ment, though it also handles the relations manipulated by and 
in a relational database or by users thereof so as to optimiZe 
query processing, table management, transaction handling, 
and distributed or remote database maintenance. 

2. Description of the Related Art 
A Relational Database Management System (‘RDBMS’) 

is a softWare system for creating, maintaining, and using a 
Relational Database (‘RDB’). An RDB is a means for repre 
senting data elements and operations on said data elements 
via the relational model (or some variant on the relational 
model such as the commonly available SQL packages), 
Where the RDB as a Whole serves as a logical model for the 
sub-portion of the real World instantiated in the RDB. The 
RDBMS includes, among other elements, both a System 
Catalog that contains the de?nitions of the logical model as 
represented in the physical memory, and the respective deno 
tations thereof Which serve as symbolic abstractions for the 
relations and constraints comprising the RDB; and a Query 
Language Processing Engine for executing relational request 
(s) Wherein said requests contain certain alloWed processor 
operations. The alloWed processor operations include logical 
operations (e.g. ‘AND’, ‘OR’, ‘NOT’) and relational opera 
tions (e.g., join, product, difference, divide, intersection, 
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2 
restriction, projection, aggregation, union, grouping, and par 
titioning); they may also include mathematical operations, 
including both direct processor function calls and mathemati 
cal algorithms (e. g. ‘PLUS’, ‘SUM’, ‘AVERAGE’); and 
alloWed character, text, and graphical operations (e.g. 
‘NAME’, ‘CHART’) provided for Within the RDBMS for 
data input, manipulation, and output. The System Catalog and 
its contents are accessible to, and are often modi?able by, the 
Query Language Processing Engine. System Catalogs are 
implemented in various forms, as is Well knoWn to those 
familiar With the art. For example, the System Catalog may be 
human-readable, compiled or otherWise embedded in pro 
grammatic code, encrypted, stored as relations, may be static 
or active, and so on. Either or both of the System Catalog and 
the Query Language Processing Engine may be implemented 
internal to the RDB, external to the RDB, or in some combi 
nation of internal and external implementation. 

There are numerous functionally equivalent symbolic 
abstractions, Well knoWn to those familiar With the art, that 
can be used for expressing and manipulating the semantics of 
sets including, for example, those for set theory, predicate 
logic, relational algebra, and relational calculus. A Set is a 
collection of data elements, representable by and satisfying a 
logical predicate (often referred to as a ‘membership func 
tion’ or ‘membership criteria’), Wherein each data element 
belonging to a set shares at least one property that is common 
to its set’s members, yet uniquely distinguishes them from 
any other data element not belonging to that set; and the 
logical predicate satis?ed by each member describes the nec 
essary and su?icient properties for belonging to that set. An 
abstract symbolic expression such as a logical predicate 
Which either fully or partially de?nes a set’s members is 
referred to here as a Membership Abstraction. The logical 
predicate contains one or more variable terms (‘predicate 
variables’), each of Which may take values pertaining a prop 
er‘ty of the set; and may contain one or more constant terms as 
Well. Every element of a set is distinguished by some property 
so that a particular element occurs at most once in any par 
ticular set; every element is unique. The Relational Database 
(‘RDB’) is a database Wherein the data is organiZed into roWs 
(knoWn formally as ‘tuples’) Which are further grouped into 
Sets knoWn as Relations, each said Relation having (either 
implicitly or explicitly) a distinguishing property or proper 
ties grouping a Set’s elements together and distinguishing 
them from non-members; and the elements of the Set being 
the roWs of the Relation. The standard instantiation of a 
Relation is a table. The single-variable terms of the logical 
predicate pertaining to the Set and Which the Relation repre 
sents each refer to a shared property of the Set and are repre 
sented by a column (also knoWn as an attribute) of the Rela 
tion; the number of predicate variables in the logical predicate 
is the number of columns in the Relation Which represents the 
Set. The values Which a particular predicate variable may take 
Within a variable term of the logical predicate are the permis 
sible values of the Relation’s column; that is, each column is 
de?ned as taking the values of a particular ‘domain’ (a set of 
values), and the value of a particular column in a particular 
roW being exactly one such value. Multi-variable terms in the 
logical predicate contain only variables that are each indi 
vidually represented by some column of the Relation. The 
logical predicate must evaluate to ‘True’ on substitution of 
each predicate variable therein With the corresponding values 
in the columns of any particular roW of a Relation. Relations 
typically have a time-varying membership; at any given time 
only some subset of roWs belong to the corresponding Set of 
all those that might per'missibly belong given solely the terms 
of the logical predicate Who se Truth or Falsity depend only on 
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recorded values of data elements. In order to capture the 
time-varying aspect of Set membership, the logical predicate 
may be considered as being augmented With a special con 
stant term called an ‘assertion predicate’ by Which a suitably 
authoriZed user may assert that a particular permissible mem 
ber either does or does not belong to the Set. A relational 
insertion operation thus corresponds to identifying the set of 
Zero or more potential member roWs that satisfy some logical 
condition or conditions and setting the value of the assertion 
predicate to ‘True’ for these roWs; a relational deletion opera 
tion corresponds to identifying the set of Zero or more mem 
ber roWs that satisfy some logical condition or conditions and 
setting the value of the assertion predicate to ‘False’ for these 
roWs. In practice, no RDBMS implementation of insertion 
and deletion operations have been manifestations of rela 
tional insertion or relational deletion as de?ned above; often 
the RDBMS implements roW by roW modi?cations (includ 
ing deletion, insertion, or update) of the Relation; and the 
RDBMS offers no explicit support for the assertion predicate. 

The uniqueness of the roWs in the Set pertaining to the 
Relation is determined entirely by the values in those roWs; 
tWo roWs in a particular relation are not unique if the values of 
corresponding columns are identical for every column value. 
Each Relation is denoted by the RDBMS in a form that serves 
as a symbolic abstraction that can be manipulated via rela 
tional logic. In practice, most current RDBMS implementa 
tions permit access and manipulation of ‘tables’ (the standard 
instantiation of relations). Some tables are not strictly Rela 
tions inasmuch as they permit duplicate roWs, roWs that con 
tain unde?ned property values (often designated With special 
markers called ‘nulls’), roWs With dissimilar semantics, 
default values, and so on. The processing of requests involv 
ing such tables is (1) less uniform than that for Relations, (2) 
not prescribed by the relational model, (3) may result in 
anomalous results not explicitly predicted by the relational 
model, and (4) unique to the particular RDBMS implemen 
tation. 
A Relation is commonly knoWn to and represented Within 

an RDB as a table having roWs and columns, and is a particu 
lar type of Set Whose members are both roWs and satisfy both 
(1) the logical predicate de?ning potential membership in the 
Set and referencing no other sets, and (2) the assertion predi 
cate, a predicate asserting that those members belong to said 
Relation (i.e., are actual, rather than just potential, members 
of the Set). A Relation Predicate is the logical predicate 
corresponding to a Relation and describes the necessary prop 
erties for a roW to belong to the Relation. All roWs having said 
necessary properties could, but need not be, members of the 
Relation; While roWs With the necessary properties are poten 
tial members of the Relation, if and only if these potential 
members have also been asserted to be members of the Rela 
tion by some suitably authorized user of the RDBMS. 

For example, an ‘Employees’ Relation might have columns 
for Employee Number (ENUM), Employee Name 
(ENAME), Employee Salary (ESAL), and Employee Depart 
ment Number (EDEPT). The ‘Employees’ relation Will have 
a Relation Predicate Emp(x) that stands for the logical de? 
nition of the Relation; e. g. ‘Emp(x)’ means that: ‘x is an 
Employee AND x has been assigned Employee Number 
ENUM AND x has Employee Name ENAME and x earns 
Employee Salary ESAL and x Works in Department Number 
EDEPT’. The actual members of the ‘Employees’ Relation 
are those roWs that have been entered into the RDB, and 
therefore both have the properties speci?ed by Emp(x) and 
have been asserted to belong to the Relation ‘Employees’. 
(Note that x is a symbol representing an arbitrary entity com 
monly referred to as an ‘employee.’) 
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4 
In practice, the Relations in an RDB are most often de?ned 

implicitly, With roW membership in a Relation being speci?ed 
on a combination of user assertion and satisfaction of Con 
straints. Most RDBMS’s use Constraints to manage their 
data. (Date & McGoveran, “HoW to Avoid Database Redun 
dancy”, Database Programming & Design, Vol. 7 No. 7, July 
1994, p. 46, 48.) A Constraint is a condition that the RDBMS 
tests against for a truth value; it is also a means for ensuring 
the RDB’s integrity, as a Constraint is used to ‘constrain’ the 
RDB’s data and Relations to those permissible (according to 
the designers and builders) and according the proper interpre 
tation of the RDB’s meaning. Constraints are de?ned, clas 
si?ed (e. g., domain, column, roW, relation, or multi-relation), 
enforced, maintained, and accessible to the RDBMS. Each 
Constraint may be expressed as a logical predicate or its 
equivalent, and so denoted Within the System Catalog as a 
symbolic abstraction. Domain constraints are used to deter 
mine Whether a data element belongs to a given domain. (E.g. 
is the value represented a character? a number? A computer 
distinguishes betWeen the numeral ‘1’ and the number ‘1’, 
betWeen the letter ‘x’, a potential but undetermined set mem 
ber ‘x’, and a variable ‘x’.) A column constraint (also knoWn 
as an attribute constraint) requires data elements Within a 
particular column to belong to a speci?ed domain (i.e. valid 
entries are those possessing a speci?c attribute; e. g. American 
salary values are in ‘dollars’). A particular relation constraint 
limits membership in a particular Relation (all members of 
this Relation satisfy the conditions of the constraint). And 
multi-relation constraints, also referred to sometimes as 
‘database’ constraints, are conditions Which must be satis?ed 
by multiple relations. A referential integrity constraint is a 
particular type of database constraint. Within a transaction, 
RDBMS programs may check to see Whether domain, col 
umn, and relation constraints are satis?ed after each indi 
vidual, subordinate operation, but must check multi-relation 
constraints after all operations on the referenced tables are 
completed (since a failure after an intermediate operation 
might be corrected by a subsequent operation on one of the 
referenced relations). In practice, the combination of explic 
itly de?ned constraints knoWn to and enforceable by the 
RDBMS is incomplete in that it does not completely de?ne 
the membership of the Relation, requiring a combination of 
extreme care on the part of the user and external ?ltering of 
attempted updates using, for example, application programs. 
In practice, errors due to incomplete or inaccurate implemen 
tation of constraints are common. 
RDB designers and users could refer to the logical descrip 

tion of a Relation Within the RDB by using a Relation Predi 
cate. (Date & McGoveran, “Updating Joins and Other 
VieWs”, Relational Database Writings 1991-1994 , Part II, 
Chapter 6, pp. 267-284.) A Relation Predicate is a portion of 
the logical predicate for the Set Which the Relation represents, 
including all terms of that logical predicate excepting the 
assertion predicate. A Relation Predicate properly expresses 
the correct (as asserted by the RDBMS’s user) interpretation 
of a relation; i.e. it is the expression of the ‘meaning’ of the 
Relation. By extension, it is the expression of the ‘meaning’ of 
a table in that RDB insofar as the meaning of that table may be 
made unambiguous. The Relation Predicate Will join together 
the logical and relational predicates that constrain the rela 
tion’s data, and alloW the user to understand them. For 
example, a one-roW, three column Table ‘Date’, With values 
‘01’, ‘01’ and ‘02’ uses three domain constraints (numeral, 
numeral, numeral), three column constraints (month, day, 
year), and one relation constraint (dates in the current cen 
tury), to enable a proper interpretation of these values as “Jan. 
1, 2002”. At least that Would be the interpretation until the 
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year 2100, When the default meaning could reasonably 
become “Jan. 1, 2102”, The Relation Predicate for ‘Date’ can 
be expressed as ‘E(x, y, Z), x is a member of Months, y is a 
member of Days, Z is a member of Years’. ‘Months’ and 
‘Days’ and ‘Years’ are domains having logical predicates that 
are further de?ned, e. g., x is a member of domain Numerals & 
‘1<q<:12’; y is a member of domain Numerals & 
‘ 1<:y<:31’; Z is a member of domain Numerals & 
‘1999<Z<2100’. The Relation Predicate for ‘Date’ might also 
include a set of conjuncts properly constraining the value of 
‘Days’ according to the value of ‘Months’, eg ‘if x:1 then 
y<:31 ’ & ‘if x:2 then y<:29’, and so on. Furthermore, the 
Relation Predicate for ‘Date’ might constrain the value of 
‘Days’ according to the values of ‘Years’ and ‘Months’ so as 
to account for leap years, eg ‘if x:2 & Z modulo 4:0 then 
y<:28’. The logical conjunction of these constraints de?ne 
the Relation ‘Dates’ and any data contained therein. In prac 
tice, no RDBMS implements an algorithm for creating or 
capturing Relation Predicates, extensions to the System Cata 
log to store Relations Predicates, or means to use Relation 
Predicates for any purpose. 

In broad terms, an RDB is a logic-based model of truths 
asserted about the real World, and the RDBMS is the means 
Whereby that model, and its logic, is manipulated and main 
tained Within the computer’s physical reality (and limita 
tions). These truths include discrete, atomic, data elements 
and combinations established by the RDBMS’s designers, 
builders, and even users. The value of an RDB derives from its 
capabilities for logic-based recombination and manipulation 
using the ‘relational model’ and Working With and through 
Relations; that value is signi?cantly and negatively affected 
by anomalous or non-uniform or unpredictable behavior, and 
especially as regards updates or other operations on relations. 

Current RDB’s distinguish betWeen Base Relations and 
Derived Relations.A Base Relation is one Where the RDBMS 
maintains a direct corollary betWeen the physical organiZa 
tion of the computer’ s memory and the logical organiZation of 
a Set’s elements. A Derived Relation is a representation of a 
Set Whose members are logically derived from, and represent 
a combination from, those members of other Sets that further 
satisfy the logical predicate that both details the necessary 
and minimal properties of the derived Set; it Will also have 
(either implicitly or explicitly) both a logical and relation 
predicate that distinguishes those elements from others Which 
lack those necessary and minimal properties, assertion of 
belonging to the Derived Set, or both. In practice, a Derived 
Relation is de?ned by relational and logical operations on 
other Relations, any of Which may themselves be Derived 
Relations. A Derived Relation may also consist of data ele 
ments Who are stored in physically-separated portions of the 
computer’ s memory. Derived Relations may be any of several 
types, e.g., VieWs (de?ned beloW), materialiZed vieWs, ‘snap 
shots’, replicas, and query results. Derived Relations are par 
ticularly valuable because the assertion of belonging can arise 
implicitly though the computer’s logical recombination and 
analysis of Base Relations, rather than depending entirely on 
human input. 

There are many Ways to combine the roWs and columns of 
Base Relations. Also, a Derived Relation may be de?ned or 
created via a relational expression that references any com 
bination of Base Relations, other Derived Relations, or both 
Base and Derived Relations. In such combinations, each of 
the referenced relations in the combined relational expression 
is knoWn as a Source Relation for the combination Derived 
Relation; the Derived Relation is sometimes referred to as the 
Target Relation; and the Derived Relation is Dependent upon 
its Source Relations. Most users, hoWever, deal not With the 
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6 
Base Relations as such, but Work from and With their limited, 
often query-driven, report-driven, or softWare application 
driven vieW into a RDB. 
A VieW is an named relational and logical expression rep 

resenting data that is made visible to the user in a form that is 
usually different from the form of the Source Relations and 
convenient to a particular use or uses, i.e. it is the user’ s ‘vieW 
into the relational database’s contents’. A VieW has a Rela 
tional Predicate (and thereby expression in the relational cal 
culus, relational algebra, and predicate calculus). A VieW can 
be understood as a ‘virtual relation’, because the data belong 
ing to a View need not be explicitly stored in the RDB as a 
distinct table; in fact, a VieW may represent one or more 
relational operations on a single relation or on a plurality of 
relations. The data belonging to a VieW is derived from data 
belonging to one or more other relations When the VieW is 
manipulated by name in relational expressions, and is tran 
sient in the sense that it does not exist if the data belonging to 
those other relations does not exist. 

VieWs are one expression of a Derived Relation, as stated 
above. VieWs differ from other types of Derived Relations in 
that Views are named virtual relations With a storage-persis 
tent de?nition (at least until the VieW is explicitly destroyed or 
‘dropped’) and so may be manipulated by authoriZed users 
(other than the creator of the View) through reference to that 
name in relational expressions and at arbitrary times.A Mate 
rialiZed VieW is a type of VieW; the data as seen through the 
VieW is made storage-persistent and modi?ed only When the 
Source Relations are modi?ed. 
Most RDBMS implementations explicitly maintain and 

track Dependencies (Whether (1) betWeen relations or (2) 
betWeen groups of columns of a relation), With these Depen 
dencies de?ned, denoted as symbolic abstractions, and acces 
sible to the RDBMS. In practice, this is usually done for 
relations as referential integrity Constraints, or View Depen 
dencies, but not betWeen non-vieW derived relations and their 
source relations. 

For example, the ‘Employees’ Relation (as de?ned above) 
and a ‘Departments’ Relation (consisting of Department 
Number DNUM, Department Name DNAME, and Depart 
ment Manager’s Employee Number MNUM) might be Base 
Relations. These tWo relations may be considered to be a Base 
Set. From the Base Set individual relations can be combined 
via relational operations to form one or several Derived Rela 
tions. A Derived Relation called ‘Managers’ might be de?ned 
as consisting of columns Department Manager’s Employee 
Number MNUM, Department Manager’s Name ENAME, 
and the Department Name DNAME of the department man 
aged by the manager. ‘Managers’ is the result of performing a 
relational join of the ‘Employees’ and ‘Departments’ Base 
Relations, With the additional Constraint that 
‘MNUMIENUM’. ‘Managers’ is said to have a ‘depen 
dency’ on both ‘Employees’ and ‘Departments’. 

‘Managers’ might, for example, be a VieW. As a named 
expression, its de?nition can be stored in memory and can be 
reused by referencing ‘Managers’ even though the actual 
roWs of ‘Managers’ are created only at execution time, and are 
based on the then-current roWs in the Base Relations (‘Em 
ployees’ and ‘Departments’). Alternatively, the de?nition of 
‘Managers’ might be an internal Derived Relation represent 
ing a sub-step to a query asking to see all ‘V1cePresidents’ 
Wherein the latter are de?ned as those Whose employees are 
themselves all ‘Managers’; While ‘V1cePresidents’ is dis 
played to the user, the interim Derived Relation of ‘Manag 
ers’ may Well not be. (Currently, most RDBMS programs do 
not provide a Way to name the Derived Relations that result 
from runtime query execution). 
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If the only relations Which users of a RDBMS (or computer 
programs) can access are Derived Relations, then these 
Derived Relations, either directly or indirectly, form the link 
age betWeen the physical location and structure in the com 
puter memory and the descriptive (as expressed, for example, 
by the conceptual or logical schemas) location and structure 
in the RDB, handled by the RDBMS. In practice, an RDBMS 
most often predeterrnines a signi?cant portion of physical 
location and structure in the computer memory of Base Rela 
tions. If all operations (including access and update) that are 
valid for Base Relations are likeWise valid for Derived Rela 
tions, the linkage attains maximum ?exibility; it then permits 
modi?cation of the set of relational expressions Which de?ne 
the set of Derived Relations in such a Way as to leave the roWs 
and columns of each of those Derived Relations unchanged, 
despite structural reorganization of the set of Source Rela 
tions (even When those Source Relations happen to be Base 
Relations) so long as the information necessary to the cre 
ation of those Derived Relations is preserved. This property is 
knoWn as Data Independence and it is intended to be a key 
value to relational (as opposed to other) databases. It is also, 
hoWever, badly limited When Base and Derived Relations are 
not handled in a uniform manner as, for example, When some 
Derived Relations cannot be updated in the same manner as 
Base Relations. 
RDBMS programs have four fundamental functions that 

are used to manage all data modi?cation operations on rela 
tions; these are respectively Insert, Delete, Update, and 
Retrieval. The ?rst three of these are used independently. The 
Insert operation alloWs neW data to be entered into a particular 
relation. The Delete operation alloWs existing data to be 
removed from a particular relation. And the Update operation 
changes one or more data elements Within a particular rela 
tion. The fourth function, Retrieval, is used to locate, manipu 
late, and produce the data in the RDB and may be used either 
independently or in combination With one of the other three. 
Other processing (logical, relational, arithmetic, or transfor 
mational) may be used to further facilitate changing data, its 
presentation to the user, or the nature of the RDB . An RDBMS 
Which has Data Independence Will alloW any of these four 
functions to take place Without the user having to be con 
cerned With the physical storage of the data or With the struc 
ture of the RDB. A recogniZed major goal for all RDBMS 
designers, users, and creators is increasing Data Indepen 
dence. 

Existing RDBMS programs alloW accessing some combi 
nations of derived data in static, report-only vieWs, and alloW 
updating particular combinations of physically stored data; 
but the current state of the art differentiates betWeen base and 
derived relations, asserting, believing, or holding that the 
latter are inherently not updateable. Also, existing RDBMS 
programs are plagued by unpredictable and non-intuitive fail 
ures in updating derived data; these failures can require a 
‘rollback’ Which, if not performed correctly, can leave the 
database in an inconsistent state. In practice, the updating of 
derived data is generally avoided. Additionally, because of 
this differentiation betWeen base and derived relations, the 
creation, maintenance, and merging of multiple physical 
databases, even When logically feasible, is often pragmati 
cally dif?cult, costly, effortful, infeasible, or just deemed 
impossible. 

Relational databases use data elements and the relation 
ships betWeen them to model a portion of the World. In prac 
tice, the data elements are organiZed at the logical level into 
relations, and are perceived as such by the user. (Date, An 
Introduction To Database Systems, 6”’ Edition, Addison 
Wesley, 1995, Ch. 3, p. 52; Addison-Wesley; ISBNO-20l 
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54329-X.) The RDB does not integrate the denotation, 
expression, and instantiation of a relation such that the model 
is clearly linkedboth to the stored tables and the data elements 
by means accessible to both the user(s) and the RDB or 
RDBMS. A relation’ s title (its denotation or referent) is either 
chosen by the designer or created by the system. Optimally, it 
should convey some meaning to the user in the manner of a 
mnemonic. It may have come from an entity-relationship 
modeling or CASE tool. It may consist of some concatenation 
of source table titles according to pre-set rules (eg the table 
combining EMPLOYEE and 401K_PLAN_MEMBERS 
may be titled EMPLOYEEi401K_PLAN_MEMBERS). 
But the RDB and RDBMS currently do not have a direct tie 
betWeen the relation, its title or denotation, and the logical 
model, and the denotation is not separably manipulable 
according to predicate logic as a symbolic abstraction for the 
relation itself, or as a symbolic abstraction of the manipula 
tion of the data elements and their combination therein. More 
over, constraints, rather than being treated equally as logical 
predicates are generally referred to simply as constraints, and 
they may have been de?ned as relational expressions; they 
have usually been separately maintained at the users discre 
tion and as SQL “relational” expressions that are used only to 
preclude updates rather than enable them. 

This distinction and lack of functional relationship 
betWeen denotation (the title), expression (the title as name), 
and instantiation (the data elements comprising the stored 
table), prevents effective symbolic abstraction and requires 
all logic-based manipulation to manage all of the individual 
data elements, tying the RDB and RDBMS to the computer’ s 
ability to manage its physical memory in Which those same 
data elements happen to be stored and represented. 

Furthermore, current relational database management sys 
tems distinguish betWeen base and derived relations, and base 
and derived data; that is, betWeen those relations or data 
explicitly contained in the physically-demarcated memory 
groupings denoted as the relational database’s ‘base tables’, 
from those contained or expressed by temporary (often 
query-driven) combinations of the base tables. These tempo 
rary combinations are knoWn as the relational database’s 
‘derived tables’. (Certain derived tables are also commonly 
referred to in the literature as ‘vieWs’.) This is a self-imposed 
handicap the ?eld has failed to recogniZe, due in part to an 
earlier theoretical error. 

This distinction limits an RDBMS’s capability to update 
derived tables (relations or data); limits users’ access to 
derived tables; and can create problems (in the form of dif? 
cult, memory- or processor-expensive transactions, or unin 
tended or unpredictable results) for those RDBMS that try to 
access or update derived tables (some do, some just don’t). 
This distinction also can cause a RDBMS to use extra 

memory in duplicating base data elements inside multiple 
tables. Existing methods to manage updates or access to 
derived tables can create potentially contradictory data sets, 
creating major problems for the RDBMS and potentially 
rendering the RDB itself unreliable. 

Furthermore, distinguishing betWeen ‘base’ and ‘derived’ 
tables (and therefore base and derived relations) means that 
no such RDBMS permits full data independence betWeen a 
data expression and the memory location corresponding to its 
physical storage, or uses uniform semantics With all opera 
tions, including derived as Well as base data expressions. An 
RDBMS possessing full logical data independence is one in 
Which (I) the descriptive representation of the data in the 
database can be changed to accommodate additional types of 
data, supporting neW programs that Will use that data While 
still maintaining the existing descriptions for previously-ex 
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isting programs and users; and, (2) multiple descriptive rep 
resentations can be provided, each specialized for a particular 
group of users or programs, each Without implying any need 
to alter existing elements of physical storage subject to the 
constraint that all representation changes are information pre 
serving. The lack of full logical data independence in turn 
creates problems With merging relational databases, distrib 
uting a relational database over multiple locations, and han 
dling multiple versions of a relational database (either over 
time or locations separated by message time), Which means 
that users often ?nd neW versions of a relational database 
become non-backWard-compatible With the pre-existing ver 
sion, Which defeats one of the principal goals of using a 
relational database. Furthermore, the lack of uniform seman 
tics for both base and derived relations can cause failures to 
certain updates, creating extra relational database system 
maintenance and requiring rollback of transactions. 
FeW existing RDBMSs provide means to update derived 

relations; those that do, do so only for an arbitrarily restricted 
feW derived relations (Date & McGoveran, “Updating Union, 
Intersection, and Difference VieWs”, Database Programming 
& Design, Vol. 7 No. 6, p. 46). These means for updating 
derived relations are very restrictive, are tied to the physical 
memory usage of the RDB, are inconsistent With those used 
for base relations, and their use often results in error messages 
sent to the user of the RDBMS. Users compensate for these 
restrictions by avoiding the use of derived relations, develop 
ing programs to provide update of speci?c derived relations, 
or through manual Workarounds. For example, IBM’s DB2 
and Oracle’s Oracle 9i RDBMS products do not permit 
update of any derived relations (speci?cally VieWs) When the 
update’s SQL uses the SQL keywords ‘DISTINCT’, 
‘GROUP BY’, or ‘ORDER BY’. There are many other 
restrictions on updating vieWs such as those that are derived 
via relational aggregation and UNION. Only a subset of those 
vieWs derived via join operations can be updated by Oracle; 
DB2 does not support join vieW updates at all. 
No RDBMS products support general update of all non 

vieW derived relations, though some provide partial update 
support of materialized vieWs, snapshots, or replicas. And, for 
those Which provide some support, that support is extremely 
restrictive. Despite the need, there are no RDBMS products 
providing a common and intuitive method by Which all rela 
tions (base and derived) can be updated (Date & McGoveran, 
“HoW To Avoid Data Redundancy”, Database Programming 
& Design, Vol. 7 No. 7, p. 46, July, 1994; Date & McGoveran, 
“Updating Joins and Other Views”, Database Programming 
& Design, Vol. 7 No. 8, p. 43, August 1994). Since all 
RDBMS implementations distinguish betWeen updating base 
and derived relations, users must learn the particular behavior 
of the RDBMS for each type of derived relation, and must be 
aWare of and can easily determine Whether or not a particular 
relation that they Wish to update is a base relation or a derived 
relation; and this restriction further violates logical data inde 
pendence and forms an impediment to physical data indepen 
dence. 

Additionally, treating base relations as stored tables pre 
vents attaining a major goal of physical data independence, 
that of separating Where and hoW a table is stored from 
manipulating the logical representation for the table’ s instan 
tiation. Symbolic abstraction of the logical representation and 
user requests into relational predicates alloWs for rapid logi 
cal manipulation to be separated from the mechanics of man 
aging the physical memory, Which otherWise limit the speed 
and poWer of the RDBMS. Currently, an RDBMS at best 
clumsily handles its oWn internal representations, lacking 
means for symbolic abstraction of the model to Which it has 
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10 
been designed and built, and Which it uses. The lack of such 
abstraction being available to the RDBMS increases the 
RDBMS’s dif?culty in distinguishing betWeen errors caused 
by logical inconsistencies, data errors, and memory limita 
tions. 
As no RDBMS maintains Relation Predicates for the rela 

tions or tables in its system catalog, separating out logical and 
data processing (e. g. for optimization purposes alone) is dif 
?cult. Although almost every RDBMS provides support for 
using constraints in managing and enforcing the consistency 
of an RDB, no RDBMS uniformly and consistently maintains 
constraints in its system catalog as Relation Predicates, and 
makes them accessible to the RDBMS or readily apparent to 
users. Users, Who Would bene?t from having a uniform 
method by Which to understand the meaning of a table When 
a particular constraint is applied to that table, are thus liable to 
misinterpret the data in a table, to access a table With a 
different meaning than the one intended, or to use a table in a 
manner inconsistent With its meaning. Each of these may lead 
to corruption of data When the RDB is subsequently updated, 
or may cause the user to make incorrect business decisions. 

Although SQL uses expressions involving predicates for 
access and update of relations, no RDBMS provides a uni 
form and consistent method of accessing or updating rela 
tions, in Which the semantics or meaning of that access or 
update is based on and expressible in relational predicates; 
these might be referred to respectively as an ‘Access Predi 
cate’ and an ‘Update Predicate’. Use of such an ‘Update 
Predicate’ Would also help ensure consistency and ease main 
tenance for both the RDB and RDBMS, particularly if these 
Were both contained Within the scope of, and accessible to, the 
RDBMS. The operations of the RDBMS Would be easier to 
maintain, optimiZe, or track if there Were means for classify 
ing portions of an ‘Update Predicate’ into one or more rela 
tional expressions, each of Which either (1) constrains the 
logical consistency or other effects of the update action, or (2) 
restricts the data that is to be affected by the update operation, 
for this classi?cation Would help determine hoW the RDBMS 
Will manage the update. 
The continued linkage betWeen physical location in com 

puter memory and descriptive location in the database by the 
database system, such as found in IWata, K. et. al. US. Pat. 
No. 4,514,826, and Matsuda, S. et. al. US. Pat. No. 5,247, 
665, is an approach that, because it is based in Whole or in part 
on information Which the RDBMS does not explicitly have 
access to (an implied structure created and maintained by the 
administrators, the terms of Which are either inaccessible or 
meaningless to the RDBMS), prevents any RDBMS from 
attaining either physical data independence, in Which the 
descriptive representation of the data in the database is freed 
from machine-speci?c and non-database terms and pro 
cesses, or logical data independence. 
The limited perception that uniqueness properties can be 

determined for a database Was explicitly limited to a 1-tuple 
condition in Leung, T. et. al. US. Pat. No. 5,615,361, because 
of the separation betWeen a binding explicitly determinable 
from the database system and that Which is actually present in 
the database’s structure. This prevents the user from making 
changes to the structure, organiZation, or contents of the 
database except through indirect database system administra 
tion, hinders the database’s actual capability to effectively 
model the information contained Within it, and limits the 
capacity to manage dependent relations or vieWs. 
Much of the problem encountered by most RDBMS in 

handling large databases has been the presence of ‘null’ ele 
ments and columns required by any method that does not 
effectively manage the data to limit unnecessary duplication, 
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due to the inherent limitations of an implicit and non-repre 
sented structure. The opportunity for improving database sys 
tem performance identi?ed in Leung, T. et. al. U.S. Pat. No. 
5,590,324 by exploiting column nullability is just a faint 
harbinger of the improved administrability, performance 
optimization, and prevention of update failures that can be 
obtained When logical data independence can be guaranteed. 
In many cases, support for logical data independence miti 
gates or removes the need to support column nullability, and 
therefore lessens and may even eliminate the need for special 
optimization techniques such as those identi?ed therein When 
column nullability is supported by the database system. 

The apparatus-speci?c approach in Huber, V. U.S. Pat. No. 
4,918,593 for maintaining dependence is explicitly limited to 
certain derived columns of base tables. It makes neither pro 
vision for derived tables nor discusses any generalizable 
method independent of the speci?c data dictionary means for 
maintaining dependence betWeen tables. The present inven 
tion makes use of dependence betWeen tables, and need not be 
maintained via any particular data dictionary means. Huber 
makes no claim pertaining either to data independence or to a 
general method for updating relations. 

The value of separating logical and physical data structures 
is evinced in Kingberg, D. et. al. U.S. Pat. No. 5,734,887, 
Which fails in its approach to free itself of the need for explicit 
tables, for both mapping the logical to physical combinations 
and the explicit joins betWeen logical entity types and the 
physical tables and columns under them. It further fails to 
make the means for such mapping or the representation 
explicitly accessible to the RDBMS. Kingberg requires the 
use of a ‘logical data interface’ for access to base relations 
from application programs Without explicitly referencing 
those relations; the approach does not provide a method for 
updating derived relations. 

Only by using an extra stage of providing a completely 
separate and independent object model does KaWai, K. U.S. 
Pat. No. 5,717,924 manage to provide a link betWeen a rela 
tional database schema and an object model for the informa 
tion contained Within the database schema. Additionally, the 
stages of managing and administering any modi?cations to 
the database schema are not explicitly described in a fashion 
that uses the logical structure of the schema, and the con 
straints and processes contained by the relational database 
system, to manage the modi?cations directly. 
A different approach to the concept of managing relation 

ships amongst base tables, one that consumes additional 
memory resources and requires additional programming and 
data entry, is speci?ed in Olson, M. et. al. U.S. Pat. No. 
5,566,333. Olson requires a distinct linker table, does not 
modify relational database or its contained data, and does not 
address the problem of updates. 

Pitt, J. et. al., U.S. Pat. No. 5,493,671, explicitly duplicates 
the entirety of any merged data, and deals solely With data 
type differences by direct conversion according to preset 
means rather than any methodology contained Within an 
RDBMS. 

The desirability of alloWing logical access, independent of 
knoWledge of the structure of the physical database, is 
addressed in Maloney, C. et. al. U.S. Pat. No. 5,701,453. 
Maloney is limited to table pairings, and the use of explicitly 
overlapping ?elds, rather than being generalizable either to 
logically possible combinations or to any representation 
explicitly available to the RDBMS. 

The value of dynamically displaying and updating data is 
mentioned in Vanderdrift, R. Us. Pat. No. 5,455,945; hoW 
ever, in that method the accessible data is limited to the 
primary or base records, is not derived from any logical 
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representation of the database, and does not use the logical 
constraints and representations of the database but rather 
depends upon the creation of explicit management records 
and memory pointers, and tracing them as necessary, thereby 
increasing the complexity and memory requirements for the 
system rather than lessening them through symbolic ab strac 
tion. Moreover, the method therein does not provide a method 
Which is consistent over data, relations, and constraints; 
instead, it distinguishes betWeen a ‘management record’, a 
function, a ?lter, and a ‘DD’ (display and organization rules). 
And the method neither makes the method accessible Within 
and to the RDBMS, nor uniform across data types, nor sepa 
rate manipulating the data, functions, and records from pre 
liminarily manipulating the logic to determine Whether and 
hoW the changes are feasible. 
The method identi?ed in Horn, G. et. al. U.S. Pat. No. 

5,226,158, may assist in determining the validity of a particu 
lar constraint; hoWever, it does nothing With such validity or 
the constraint itself. Nor does the method therein alloW for 
generalization to means for consistently managing base 
tables, derived tables, and constraints, as Well as any particu 
lar constraint. 

RevieW of Certain RDBMS Mechanisms 
There are many methods in the art by Which RDB updates 

have been implemented. Relational updates are set transfor 
mations, as contrasted With roW or record modi?cations. This 
fact implies that updates are atomic, i.e., an unrecoverable 
error of any type requires that the entire update be aborted. 
Typically, updates are applied in the context of a transaction 
so that atomicity is insured by a transaction manager or some 
equivalent softWare component. The usual method by Which 
either relational update or transaction atomicity is insured is 
to make all updates to a copy of the data, leaving a copy 
(knoWn as a ‘before image’) unmodi?ed. If an error occurs, 
the un?nished modi?cations can be discarded and the RDB 
restored to its original condition using the before image. If the 
update completes successfully, the modi?ed copy (knoWn as 
the ‘after image’) can be used to replace the before image. 
This technique is often used in a nested fashion so that each 
update Within a transaction has a corresponding before image 
and after image, as does the entire transaction. Regardless of 
the particulars of transaction management, the illusion is 
given that the entire database is transformed from the publicly 
available version of the data (before image) through a 
sequence of private after images (each generally hidden from 
other users) until the transaction completes. If it is successful, 
the ?nal after image produced becomes the publicly available 
version of the data. In practice, there may not be a physical 
after image or before image, but only the appearance of one. 
Many variations on the method of transaction management 
exist, but are functionally equivalent to the one described 
here. See Date, Introduction to Database Systems, supra, for 
a more detailed explanation. The after images of tables modi 
?ed by a transaction are often checked prior to completing the 
transaction to determine consistency. Such constraint checks 
may require reading other tables that have not been modi?ed 
(i.e., have no after image) Within the context of the particular 
transaction. 

Methods for processing a request, Whether a data retrieval 
or a data modi?cation, are generally referred to by the term 
‘query processing’. The literature pertaining to query pro 
cessing in an RDBMS is extensive and includes subtopics 
such as query parsing, internal query representation, optimi 
zation, and physical data access methods. A common internal 
query representation technique is knoWn as a query tree, in 
Which data access methods form the leaves of the tree and 
successive nodes represent operations on the (possibly inter 
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mediate) data. Operations are typically either unary or binary, 
this being su?icient to represent all relational operators. 
Every relational request and every predicate formula can be 
represented by such a query tree as can the de?nition of every 
relational view, since a relational view is de?ned as a named 
retrieval operation on one or more relations. 
A common and well-known technique for processing a 

retrieval involving a view is to combine the query tree repre 
senting the retrieval with the query tree that represents the 
view de?nition. In order to use the technique, the RDBMS 
must maintain dependency information in its System Cata 
logithat is, information which relates the view to the rela 
tions on which its de?nition depends. Because a view may be 
de?ned in terms of relational operations on other views as 
well as base tables, this dependency information is most 
naturally stored in the form of a ‘dependency tree’ with leaf 
nodes representing base tables and nodes above them repre 
senting derived tables. Numerous data structures have been 
used for storing dependency information, many of which are 
equivalent to dependency trees in the sense that they are 
capable of storing precisely the same information but differ in 
the algorithms used to process that information. Some may 
contain information in addition to dependency information. 
Dependency trees are often used to process requests involv 
ing views, including modi?cation requests. Most implemen 
tations provide only limited support for view modi?cation 
requests. Furthermore, most implementations use depen 
dency information to propagate modi?cation requests as if 
they pertained to individual rows of the view, or to substitute 
the de?ning retrieval in place of each view reference so that 
the request ultimately attempts to modify only base relations. 
This well-known direct substitution technique, and its equiva 
lent methods, result in valid modi?cations only for certain 
types of views and such RDBMS implementations typically 
restrict view updates to those for which it is known to be valid. 

The meanings of objects in an RDB (domains, columns, 
rows, base relations, and derived relations) in an RDBMS are 
mo st frequently maintained through methods that are distinct 
from both the maintenance of the RDB (such as the creation 
of relations and views) and the processing of requests. For 
example, object naming conventions, separate data dictionar 
ies, “help” systems, and the like may exist that permit the 
capturing of obj ect de?nitions, each of which requires manual 
steps to create and maintain that are distinct from those steps 
used to create or modify the object. Such de?nitions are 
typically human readable, are not used by the RDBMS in 
processing requests, and over time diverge from an accurate 
representation of their corresponding operational de?nitions. 
All too often, RDB creators and users rely upon object nam 
ing to convey meaning, a practice that is unreliable, ine?i 
cient, and cannot be used by the Query Language Processing 
Engine. 

Brief Summary of Current Literature in the Field 

Research into the problem of updating derived tables has 
been limited because of a theoretical misapprehension. One 
of the theoreticians, in 1988, claimed to have proven that 
updating views was potentially impossible, or at least that any 
method that claimed to work for all views was subject to an 
unpredictable failure. Buff (“Why Codd’s Rule No. 6 Must 
Be Reformulated,”ACM SIGMOD Record 17:4, 1988) stated 
a theoretical proof that a general algorithm for deciding 
whether or not a view is updateable is undecidable within the 
predicate logic. This paper has been the dominant and most 
serious barrier to investigation of the problem of a general 
algorithm for updating views, let alone arbitrary relations. 
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However, as Buff does not provide a proof of impossibility 
within the relational algebra, nor show that the relational 
algebra and the predicate logic are equivalent, he therefore 
does not address the embodiment of the invention of this 
application. Also, Buff never considered those limited imple 
mentations of the relational algebra which are necessary to 
reduce the relational model to practice on physical comput 
ers; instead, his paper considers solely the pure mathematics 
for abstract, theoretical algorithms. 
One of the co-inventors was previously so persuaded of the 

non-updateability of views by E. F. Codd (The Relational 
Model for Database Management Version 2, Addison-Wes 
ley, 1990), in which the author referenced his unpublished 
algorithm (View Updatability in Relational Databases: Algo 
rithm VU-1, unpublished, 1987) for determining whether or 
not a view might be theoretically updateable. The referenced 
algorithm was not, and has not been, reduced to practice, and 
did not provide any method by which arbitrary views could be 
updated. Furthermore, Codd does not teach that all views are 
theoretically updateable, nor does he provide a method by 
which arbitrary or even speci?c view updates are to be 
achieved. Also, the view updates which Codd does describe 
involve row operations and do not preserve the set semantics 
of relational operations. 

Dayal and Bernstein (“On the Correct Translation of 
Update Operations on Relational Views”, ACM TODS 7:3, 
1982) provided a formal treatment of view updating rules for 
restriction, projection, and join views only. They did not 
provide a general method for updating views or arbitrary 
relations. 

Keller (“Algorithms for Translating View Updates to Data 
base Updates for Views Involving Selections, Projections, 
and Joins”, Proc. 4th ACM SIGACT-SIGMOD Symposium 
on Principles of Database Systems, 1985) presented criteria 
for algorithms that would implement a limited class of view 
updates, and multiple algorithms which satisfy those criteria. 
A single, general purpose method was not presented (or sug 
gested as even possible), and the semantics of the update 
operation are not propagated to the base relations. 
Nathan Goodman (“View Update is Practical”, InfoDB 

Vol. 5, No. 2, 1990) proposed that the user, in de?ning a view, 
be provided with a means for also specifying view-speci?c 
methods of updating. No attempt was made to provide a 
method by which arbitrary views can be updated; the problem 
of updating derived relations other than views is not dis 
cussed. Goodman did refer to well-known methods of updat 
ing a few particular types of views using type-speci?c meth 
ods which he recogniZed as not generaliZable. He also 
identi?ed types of view which he contended required user 
de?ned and type-speci?c methods for updating, denying the 
possibility of a generaliZed algorithm. 

Since the Nathan Goodman article, mo st of the literature on 
“view updating methods” refers to the propagation of updates 
from one or more source relations to a physically stored 

derived relation, and how to most e?iciently manage physical 
aspects of this operation. This has generally been referred to 
as the problem of updating or managing ‘materialized views’. 
It does not address the problem of updating a derived relation 
and then propagating the appropriate changes to the source 
relations; therefore, this body of literature does not bear upon 
this application. 
The ANSI (American National Standards Institute) has 

published a standard for the syntax and some semantics of the 
SQL query language; this query language is the one which 
almost all RDBMS products support. The current (and forth 
coming) version of the ANSI SQL standard states explicitly 
that expressions involving updates of views are not legal 
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expressions in the language except in a limited number of 
speci?c cases. The semantics described for updating those 
limited types of vieWs are, in general, inconsistent With the 
semantics of updating base relations, resulting in a surprising 
and non-intuitive behavior from the perspective of users. 
RDBMS products that support SQL have been required by 
market pressure to support the syntax and semantics de?ned 
in the ANSI SQL standard; the ANSI SQL standard has been 
and continues to be a barrier to developing (let alone imple 
menting) approaches for general vieW updating. 

C. I. Date (Introduction to Database Systems, 6th Edition, 
Addison-Wesley, 1995, pp. 472ff) describes separate updat 
ing procedures for each of certain types of vieWs, but fails to 
introduce a general approach to updating all relations, 
Whether base or derived; the possibility of updating certain 
types of vieWs is explicitly denied. Also, Date provides sepa 
rate procedures for various types of updates (for example, 
insert, delete, or modify). The limits on vieW updatability 
imposed by the ANSI SQL standard mentioned above are 
discussed, Which may further have seemed to validate a mis 
taken belief in the non-updateability of vieWs. 

There is a need for maintaining and tracking, preferably by 
a symbolic abstraction such as by means of relation predi 
cates, the relationships or dependencies among a derived 
relation and its source relations, so When a source relation is 
changed the derived relation is also updated. Also needed is a 
means to derive a relation predicate for a derived relation 
from the combination of relation predicates for its source 
relations, predicates for constraints on those relations, and the 
predicates for the relational operations on source relations 
used to de?ne the derived relation; once derived, it Would be 
further desirable to make the same accessible to the RDBMS 
and its programmers or even users. Also desirable Would be 
means to decompose a relational expression involving a 
derived relation into a logical combination of one or more 
relational expressions, each of Which is either a relation predi 
cate of a source relation or a predicate corresponding to a 
constraint on one or more source relations. Such means 

should permit successive decomposition of a relational 
expression, so When the result of one step of decomposition 
generates one or more relational expressions that themselves 
involve a derived relation, each of these is further succes 
sively decomposed, leading ?nally to a logical statement 
Whose every element is either a relation predicate of a base 
relation or a predicate corresponding to a constraint on one or 
more base relations. 
What is needed is a common and uniform method that can 

(i) provide uniform symbolic abstraction of data, relations, 
and constraints comprising an RDB managed by an RDBMS, 
(ii) alloW bothusers and the RDB and RDBMS to use the most 
effective of either logical manipulation of the symbolic 
abstractions or manipulation of the same symbolic abstrac 
tions’ instantiation to reason With and manage data elements 
and relations, and (iii) provide access to or an update on an 
arbitrary relational expression as a symbolic abstraction and 
thence on the physically-embodied data and relations for 
Which the symbolic abstraction stands, Whether the data and 
relations referenced by that expression are vieWs, other types 
of derived relations or base relations. 

SUMMARY 

The present invention is directed to a method that satis?es 
this need (de?ned in the preceding Background section). The 
method describes hoW a relational database management sys 
tem can create and maintain relation predicates; and access 
and update vieWs and relations in a relational database 
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through symbolic abstraction and Without having to distin 
guish betWeen base and derived data; the method thereby 
providing, to both the RDBMS and user, for derived tables 
and data the same access and updating capabilities currently 
provided for users or designers for base tables and data. 

The embodiment of the invention explicitly (that is, Within 
and accessible to the relational database management system) 
catalogues denotations, Which are symbolic abstractions With 
meaning for both the user and the RDB and RDBMS, Where 
the denotations are descriptions of the instantiation of data 
elements, relations and constraints managed by the system. 
These denotations are expressed and manipulable as relation 
predicates. The embodiment further explicitly makes these 
relation predicates part of, accessible to, and manipulable by 
the relational database management system, rather than 
merely inherent in the relational database’s structure and the 
separately-programmed rules managed by the relational data 
base management system. 
The embodiment further tracks dependencies for all 

derived relations, processes relational operations on the RDB 
through relational predicates, and links and queues validity 
constraint checks run by the RDBMS to resolve at the appro 
priate time, all separately from any physical, environmen 
tally-dependent, computer and hardWare management con 
cerns. 

This embodiment of the invention enables maximum ?ex 
ibility, minimum maintenance, and highest performance for 
any relational database management system incorporating it. 
It also frees users and relational database management sys 
tems from many of the di?iculties of accessing and updating 
derived tables, and makes such access and updating predict 
able. If the design of the database is consistent With the strict 
de?nition of relations as speci?ed by the relational model, it 
also guarantees that such access and updating is consistent 
With the relational algebra and happens in an intuitive manner. 
This embodiment of the invention furthermore leads to a 
minimal use of physical memory by a RDBMS by eliminat 
ing logically-unnecessary duplication of base data elements. 
(Security, communication, or hardWare requirements, con 
cerns beyond the scope of the relational database manage 
ment system though it must cope With their speci?c imple 
mentation, may still drive some duplication.) This also 
creates, in the preferred embodiment, provable, full data inde 
pendence betWeen data and its physical storage for any rela 
tional database management system incorporating the 
embodiment of the invention, and provides uniform seman 
tics for operations on base, derived, or commingled base and 
derived tables, and data. It further provides improved consis 
tency, maintainability, data integrity, and recoverability of 
single or distributed relational databases, and ?nally provides 
a Way to minimiZe relational database management system 
maintenance and eliminate update-caused rollbacks. 

The brief summary of the invention is provided so that the 
nature of the invention may be readily comprehended. A more 
precise and fuller comprehension may be obtained by refer 
ence to the folloWing detailed description of the invention in 
connection With the appended and associated draWings. 

DESCRIPTION OF THE SEVERAL VIEWS OF 
THE DRAWINGS 

FIG. 1 is an abstraction of a computer system incorporating 
the preferred embodiment, With processing, memory, input/ 
output, and softWare sub-systems and means. 

FIG. 2 is an instantiation of an RDB and RDBMS, With 
subordinate features belonging to the latter of a System Cata 
log (SC) and Query Language Processing Engine (QE). 
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FIG. 3 is a more detailed vieW of the System Catalog, With 
tables to store RDB details, including constraint de?nitions 
for domains, columns, tables, and the database (i.e., multi 
table constraints), Relation Predicates (RPs), Dependency 
Trees, and operation authorizations (‘SF’). 

FIG. 4 is an example of a relation expressed as a table. 
FIG. 5 is a ?owchart of the main steps of the method 

detailed beloW. 
FIG. 6 is an example of an update operation in the preferred 

embodiment. 

DETAILED DESCRIPTION OF THE INVENTION 

The method described in the claims beloW Works for and in 
a Relational Database Management System (‘RDBMS’), 
running on a computer having memory, a processor, and input 
and output means. An RDBMS is a softWare program that 
runs on the computer, using the latter’s memory and proces 
sors for physically storing and manipulating data, and using 
the latter’s input and output hardWare for translating betWeen 
physical and logical representations and back again. This 
softWare program includes an RDBMS as described in the 
previous sections. 

Implementation 

This embodiment of the invention may be implemented in 
a single computer, a distributed computer system, or in an 
embedded-chip. The preferred embodiment comprises one or 
more softWare systems designed for an SQL-based RDB and 
RDBMS, containing a System Catalog (SC) and Query Lan 
guage Processing Engine (QE). Alternative embodiments 
implement either or both the SC and QE, or the entire inven 
tion, external to the RDBMS, or in any internal or external 
combination. In this context, a softWare system is one or more 
softWare programs and associable hardWare memory (ran 
dom-access, dynamic, static hard disk or disk array). A soft 
Ware system should be understood to comprise a fully Work 
ing software embodiment of one or more functions, Which 
can be added to an existing computer system (to provide neW 
or improved functionality) or to a neW general computer 
system (to provide a special function computer system With 
the softWare system’s incorporated functionality). SoftWare 
systems are generally layered, as are RDBMS. The loWest 
layer generally is an operating system (‘OS’) that manages 
hardWare operations. Additional layers may provide speci?c 
computational or processing functionality, a graphical user 
interface, speci?c input/output capability for particular sci 
enti?c or data acquisition or display hardWare, or inter-sys 
tem communication and sharing capability (i.e. WAN, 
INTERNET, or non-Wire-based, communications). These 
softWare systems provide a foundation on Which additional 
softWare systems can be built or changes made to the current 
set. 

A softWare system can thus be understood as a softWare 
implementation of a function Which, When added to or 
included Within a computer, provide neW, speci?c function 
ality to a general-purpose tool. The software system for this 
embodiment of the invention may be distributed by computer 
usable media such as diskettes, CD-ROM or DVD disks, or 
electronic signals over a remote connection (i.e. doWnloaded 
over INTERNET-based electronic distribution). Also, it 
should be understood that the interface betWeen one softWare 
system and another meant to Work With it should be Well 
de?ned and shared, and it should be understood in the context 
of this embodiment of the present invention that delineations 
betWeen softWare systems (e. g. RDBMS from RDB from OS) 
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18 
are representative of the preferred embodiment. HoWever, the 
invention may be implemented using any combination or 
separation of softWare systems and hardWare. 
The preferred embodiment of the invention comprises a set 

of softWare systems for accessing and updating relations, 
both base and derived, in a relational database. A single com 
puter system incorporating the preferred embodiment is 
shoWn in FIG. 1, Which includes a central processor 1, con 
nected by means of a bus 3 to read only memory (‘ROM’) 5, 
random-access memory (‘RAM’) 7, and static memory 9. 
The static memory may comprise any of the folloWing, alone, 
in combination, or their functional equivalent: hard disk, disk 
array, ?ash memory, bubble memory, chip-based memory, 
magnetic tape, optical disk. When the computer is operating 
the method Will be part of the softWare systems (including the 
RDB and RDBMS) stored in RAM and static memory 
depending on the operating system’s memory management. 
The computer system in FIG. 1 is also connected to both an 
output system, Which comprises at least one display 11 or 
other output device, by Which the computer presents infor 
mation to the user, and at least one input system 13, Which 
comprises at least one or more devices by Which data is input 
to the computer, Which may include but are not limited to: a 

keyboard, a mouse, a pointing device, a voice sensor, a 
graphic input tablet, a touch screen, a touch screen overlay, a 
joystick, a track ball, a light pen, a scienti?c data sensor, or a 
numeric keypad. In computer’s memory are the RDB 15, 
RDBMS 17, and softWare implementation of the method 19. 

The computer system contains at least one RDB and 
RDBMS (FIGS. 2, 21 and 23, respectively); to be useful, the 
RDB must be ‘populated’ (i.e. having data elements entered 
and relationships de?ned). The RDBMS contains an SC 25 
that describes operations, elements, contents, and/ or structure 
of the RDB accessible to the RDBMS, and a QE 27 that 
de?nes operations performable Within the RDBMS. In the 
preferred embodiment (FIG. 3), the SC includes tables 29 
Which store, for example, constraint de?nitions for domains, 
columns, tables, and the database (i.e., multi-table con 
straints), Relation Predicates (RPs) 31, and Dependency 
Trees 35 Which de?ne the dependencies betWeen Derived 
Relations and their Source Relations, in addition to those 
Which contain de?nitions of the physical and logical organi 
Zation of those objects and operation authorizations (‘SF’) 37, 
to protect against unauthoriZed or inadvertent alteration. The 
SC may be fully integrated Within the RDBMS, may be a user 
supplied augmentation of an existing SC, or may be a facility 
external to the RDBMS (as, for example, external data ?les, 
data dictionaries, information embedded in programs, and so 
on, along With means to use the information contained therein 
in an appropriate manner With the RDBMS). The QE accepts 
requests in one or more query languages (e. g., SQL) via either 
user input or programmatic interface. When a Relation (an 
example Relation is shoWn in FIG. 4) is created or modi?ed 
(e.g., by adding a constraint), the RDBMS derives and stores 
the resulting RP in the SC. When a Derived Relation is cre 
ated, the QE creates and stores a Dependency Tree along With 
the de?nition of the Derived Relation in the form of both 
query language text and the query tree. 

This invention can be implemented entirely Within the 
RDBMS or, in the alternative, may be separable and interface 
With the RDBMS. This separation could take any of a number 
of forms, With the method being a front end to the RDBMS, a 
gateWay that sits betWeen the RDBMS and the user or appli 
cation seeking to access the RDB, or as an augmentation to 
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the RDBMS that is invoked from and by the RDBMS (via 
triggers, exits, hooks, APIs, and the like). 

Overview of Creation and Maintenance of Relation 
Predicates 

A Relation Predicate for a particular Base Relation consists 
of the logical conjunction of the following: 

each domain constraint over which an attribute (column) of 
the Relation is de?ned; 

each column constraint pertaining to an attribute of the 
Relation; 

each row constraint pertaining to rows of the Relation; and, 
each multi-row constraint pertaining to rows of the Rela 

tion. 
A Relation Predicate for a particular Derived Relation, 

where that relation is derived via relational operations (re 
striction, projection, join, union, etc.) on one or two other 
relations, is de?ned in terms of the Relation Predicates for 
those one or two other relations as speci?ed in Table 1 below. 
(In Table 1, R1, R2, R3, and R4 are arbitrary relations; PR1, 
PR2, PR3, and PR4 their respective Relation Predicates; and 
*PR2 is PR2 with speci?ed modi?cations. Also, P5 is an 
arbitrary well-formed predicate, ‘AGGREGATE’ is any valid 
aggregate operation, and ‘NAME’ is an arbitrary column 
label.) The Relation Predicate includes as conjuncts any inde 
pendently de?ned multi-relation constraints that reference 
only the relations involved in the relational operation by 
which the Derived Relation is formed. It does not include any 
multi-relation constraints that reference a relation not 
involved in the relational operation by which the Derived 
Relation is formed. Just as arbitrarily complex Derived Rela 
tions can be formed by successive combination using mul 
tiple relational operations, the corresponding Relation Predi 
cate can be derived by successive application of the 
de?nitions or “rewrite rules” in Table l. 
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relation de?nition are modi?ed, and is eliminated, either lo gi 
cally or physically, at such times as R1 is destroyed. Creation, 
modi?cation, and destruction of Relation Predicates, collec 
tively referred to as Relation Predicate de?nition updates, 
may be triggered by, for example, signals received by the 
RDBMS (or other suitable software component) from a suit 
ably authoriZed user, alteration of appropriate portions of the 
SC, or other means which will be well-known to those famil 
iar with the art, any of which indicate that relations and 
constraints have been created, modi?ed, or destroyed. In an 
alternative embodiment, Relation Predicate de?nitions are 
updated periodically. In a further alternative embodiment, 
Relation Predicate de?nitions are updated as necessary and 
appropriate when those Relation Predicates are needed for 
some particular purpose. 

In the preferred embodiment, the creation and modi?cation 
of Relation Predicates is triggered by the creation and modi 
?cation of relation and constraint de?nitions, and more spe 
ci?cally by the storage of those de?nitions in the SC. (In an 
alternative embodiment, the algorithm for creation and modi 
?cation of Relation Predicates is an integral part of the algo 
rithms for creation and modi?cation of relation and constraint 
de?nitions, possibly resulting in the storage of the Relation 
Predicate in the SC.) The SC contains one or more tables 
which records the objects (columns, domains) upon which 
each relation depends, and the set of such objects on which R1 
depends is retrieved from the SC. 

If R1 does not depend on other relations, the constraint 
de?nitions which reference either R1 or these objects, includ 
ing domain, column, row, and multi-row constraints, are then 
retrieved from the SC, said de?nitions being stored in as 
logical predicates, and each being logically conjoined. 

If the R1 depends on one or more other relations, the 
Relation Predicates for these relations and the query tree that 
de?nes R1 are retrieved. The query tree is converted into a 

TABLE 1 

RELATIONAL RELATIONAL LOGICAL MULTI-RELATION 
OPERATION EXPRESSION EXPRESSION CONSTRAINT 

PRODUCT R2 PRODUCT R3 PR2 AND PR3 
RESTRICT R2 RESTRICT P5 PR2 AND P5 
PROJECTION R2 REMOVE COL-A *PR2[<all terms EXISTS (R2.COL-A) 

involving COL- AND <all multi-column 
A deleted>] constraints involving 

R2.COL-A> 
UNION R2 UNION R3 PR2 OR PR3 
DIFFERENCE R2 MINUS R3 PR2 AND NOT 

PR3 
INTERSECT R2 INTERSECT R3 PR2 AND PR3 
EXTEND EXTEND R2 ADD P5 AS PR2 AND P5 

‘NAME’ 
‘AGGREGATE’ SUMMARIZE R2 BY PR2 AND FORALL R2.COL-A, 

(COL-A) ADD P(‘NAME’) R4.NAME = ‘AGGREGATE’ 

‘AGGREGATE’(COL-B) (R2.COL-B) AND 
AS ‘NAME’ R4.COL-A = R2.COL-A 

A number of less-preferred embodiments would incorpo 
rate different sub-sets of the de?nitions in Table 1. Some 
might choose not to implement a column (for example, not 
de?ning the rules for any Logical Expression); some might 
not choose to implement a row (for example, not de?ning the 
rewrites for the Relational Operation ‘EXTEND’). 

In the preferred embodiment of the present invention, the 
Relation Predicate for a particular Relation ‘R1’ is derived 
and stored in the SC at the time R1 is created, is appropriately 
altered at such times as the set of relevant constraints or the 
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nested, linear representation containing only unary and 
binary relational operations (restriction, projection, product, 
union, and so on) and relation references (e.g., relation name 
or relation variable) as operands using means well-known to 
those familiar with the art. Each operand and its correspond 
ing operands form a relational expression and are replaced 
with the corresponding logical expressions. In the preferred 
embodiment, Table 1 above is stored (for example, in the SC, 
embedded in the program, or other obvious means) and the 
replacement accomplished by lookup in Table l and substi 
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tution in the expression. The de?nitions of any multi-relation 
(i.e., database) constraints that reference only those relations 
already referenced Within the expression are also retrieved 
(e. g., from the SC) and logically conjoined With the existing 
predicates. 

In the preferred embodiment, modi?cation of a relation 
de?nition (e.g., adding a neW column), adding a neW con 
straint, dropping an existing constraint, or modifying an exist 
ing constraint may be handled by dropping the de?nitions of 
any existing relation predicates that depend on the objects 
referenced by that relation de?nition or those constraints and 
creating those relations predicates again using the methods 
described for creation of a relation predicate. In an another 
embodiment, the affected portions of those relation predi 
cates are appropriately either replaced With the appropriate 
updated predicates or deleted; numerous means for identify 
ing the dependant portions of a predicate and performing 
expression substitution of those dependant portions With 
updated versions are Well-known to those familiar With the 
art. 

For example, if the relation ‘Date’ discussed above is cre 
ated, the SC Will then contain for ‘Date’ a symbolic represen 
tation of the roW constraint ‘FORALL (x, y, Z) IN ‘Dates’, (x 
IN ‘Months’) AND (y IN ‘Days’) AND (Z IN ‘Years’)’. The 
SC Will also have a symbolic representation of the domain 
constraints for ‘Months’ and ‘Days’ and ‘Years’ correspond 
ing to ‘FORALL x in ‘Months’, (x IN ‘Numerals’) AND 
(l<q<:l2)’; ‘FORALL y in ‘Days’, (y IN ‘Numerals’) 
AND (l<:y<:3l)’; ‘FORALL Z in ‘Years’, (Z IN ‘Numer 
als’) AND (1999<Z<2l00)’, Where ‘Numerals’ is a funda 
mental domain in the sense that the RDBMS inherently 
knows hoW to test membership for that domain given a par 
ticular data value. The SC Will have a symbolic representation 
of the roW constraints for ‘Date’ corresponding to a set of 
conj uncts properly constraining the value of ‘ Days’ according 
to the value of ‘Months’, e.g. ‘FORALL (x, y, Z) IN ‘Dates’, 
(x:l IMPLIES y<:3l) AND (x:2 IMPLIES y<:29) AND 
(etc.)’. The SC Will also have a roW constraint for ‘Date’ 
corresponding to ‘FORALL (x, y, Z) IN ‘Dates’, ((x:2) AND 
(Z modulo 4:0)) IMPLIES (y<:28)’. These constraints are 
retrieved from the SC and logically conjoined. After collect 
ing terms, the resulting Relation Predicate for ‘Dates’ is: 
‘FORALL (x, y, Z) IN ‘Dates’, (x IN ‘Months’) AND (y IN 

‘Days’) AND (Z IN ‘Years’) AND ((x IN ‘Numerals’) 
AND (l<q<:l2)) AND ((y IN ‘Numerals’) AND 
(l<?/<:3l)) AND ((Z IN ‘Numerals’) AND (1999<Z 
<2l00)) AND (x:l IMPLIES y<:3l) AND (x:2 
IMPLIES y<:29) AND (etc.) AND (((x:2) AND (Z 
modulo 4:0)) IMPLIES (y<:28))’ 

Similarly We might, for example, have determined that rela 
tions ‘Employees’ With columns (ENUM, ESAL, EDEPT) 
and ‘Departments’ With columns (DNUM, MNUM) and have 
the Relation Predicates, E(x, y, Z) and D(u, v) respectively. 
For clarity, We abbreviate uniqueness constraints or predi 
cates, the form of Which is given in Table l, as ‘Unique(x)’. 
E(x, y, Z) and D(u, v) are then, for purposes of illustration, as 
folloWs: 

‘E(x, y, Z):‘FORALL (x, y, Z) IN ‘Employees’, (x IN 
‘Employee_Numbers’) AND (y IN ‘Salaries’) AND (Z 
IN ‘Department_Numbers’) AND ((x IN ‘Numerals’) 
AND (0<x<l00000)) AND ((y IN ‘Numerals’) AND (y 
>0)’ AND ((Z IN ‘Numerals’) AND (0<Z<l000)) AND 
Unique(x) AND (EXISTS(Departments.DNUM:Z)’ 

and 
‘D(u, v):’FORALL (u, v) IN ‘Departments’, (u IN 

‘Department_Numbers ’) AND ((u IN ‘Numerals ’) AND 
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(0<u<l000)) AND Unique(u) AND (v IN ‘Employee 
_Numbers’) AND ((v IN ‘Numerals’) AND 
(0<v<l00000)) AND EXISTS(Employees.DNUM:u)’ 

The Relation ‘Managers_Salaries’ With columns (DNUM, 
MNUM, ESAL) is derived from ‘Departments’ and ‘Employ 
ees’ by forming the product, restricting to those roWs for 
Which (MNUMIENUM) and (DNUMIEDEPT), and pro 
jecting DNUM, MNUM, and ESAL. The effect of three rela 
tional operations are given in Table l and, on successive 
application and rearrangement of terms, give the folloWing 
Relation Predicate MS(u, x, y) for the Derived Relation 
‘Managers_Salaries’: 

‘MS(u, x, y):FORALL (u, x, y) IN (‘Employees’ PROD 
UCT ‘Departments’), (x IN ‘Employee_Numbers’) 
AND (y IN ‘Salaries’) AND (Z IN ‘Department_Num 
bers’) AND ((x IN ‘Numerals’) AND (0<x<l00000)) 
AND ((y IN ‘Numerals’) AND (y>0)’ AND Unique(x) 
AND 

(u IN ‘Department_Numbers’) AND ((u IN ‘Numerals’) 
AND (0<u<l000)) AND Unique(u) AND EXISTS 
(Employees.DNUMq1) 
AND 

EXIST(Z) AND EXISTS(Employees(x, y, Z)) AND ((Z IN 
‘Numerals’) AND (0<Z<l000)) AND (EXISTS 
(Departments.DNUM:Z) AND EXISTS(v) AND 
EXISTS(Managers(u, v)) AND (v IN ‘Employee_Num 
bers’) AND ((v IN ‘Numerals’) AND (0<v<l00000)) 
AND 

(xql) AND (Z:l.1) 

Creating Augmented Derived Relation De?nitions 

One objective of this method is to enable the RDBMS to 
augment derived relation de?nitions With a computable map 
ping betWeen the columns of the derived relation to columns 
of the base relations on Which it is de?ned (‘Mapping’). The 
mapping from source columns (‘x1’,‘x2,’, ‘x3’, . . . ‘xn’) to a 
particular derived relation column (‘y 1’) may be represented 
symbolically as a function ‘yFfl-(xl, x2, x3, . . . xn)’, this 

de?nition of this function being given normally in the course 
of de?ning the derived relation. In order to update a particular 
source column (‘xi’) given a neW value of a particular derived 
relation column, an inverse function de?nition (or its equiva 
lent) is required and may be represented symbolically as a 
function ‘xi:gl-(yj)’. In the case Where the derived relation is 
created entirely from a relational operation on one or tWo 
source relations, the relationship is just ‘XI-11’ (a ‘simple 
map’). The set of inverse functions g:{gl.( )j> provides a 
method of computing the values of source columns from the 
values of derived columns. Every derived relation may be 
derived from repeated application of the relational operations 
(each of Which is either unary or binary) on a ?nite set of 
source relations, such a de?nition of the derived relation most 
often being represented internally as a query tree. 

In the preferred embodiment, the Mapping is fully deter 
mined by the information in the query tree and depends on the 
relational operations of restrict, product, union, set differ 
ence, intersection, join, and projection. The method proceeds 
from the base relations up through the de?ning query tree, 
combining the columns of each source relation (‘Sl ’, ‘S2’) in 
accordance With the relational operation designated by a node 
of the tree to produce the derived columns of the derived 
relation (‘D’) and therefore the function Which de?nes the 
mapping betWeen a derived column and a particular set of 
source columns. This details on determining this Mapping are 
as folloWs. 
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For each node in the query tree, traversing the tree from the 
bottom up, the function is identi?ed that de?nes values of 
columns of the derived relation in terms of values of the 
corresponding source relations. 

For each such mapping function, the corresponding inverse 
function is then found: 

(a) If the relational operation is a ‘restrict’ or ‘product’, the 
columns of the derived relation map identically to those 
of the source relations. Thus S.xl.:D.yj for each column 
in each S. Additionally, if the relational operation is a 
‘tWo-variable restrict’ sometimes called a ‘join condi 
tion’ then both variables of the join condition map to the 
same derived relation columns. For example, if 
‘S1.xl:S2.x2’ and S1.x1:D.y2, then Sl.xl:D.y2 is added 
to the map. 

(b) If the relational operation is a ‘union’, ‘set difference’, 
or ‘set intersect’, the columns of the derived relation map 
to the columns of both the source relations. Thus, given 
a value of a column D.yl-, S l.xl-:D.yi for each column in 
S1 and S2.xi:D.yi for each column in S2. 

(c) If the relational operation is ‘project’, then for each 
column S2.xk in the source that is eliminated by proj ec 
tion and for Which a default constant ‘c’ or default func 

tion ‘def({Zl-})’ (Where {Z1} is a set of function argu 
ments) has been de?ned, the map is de?ned as ‘ S2.xk:c’ 
or ‘S2.xk:def({Zl-})’. 

This procedure results in each column of the ?nal relation 
(represented by the root node of the query tree) being speci 
?ed in terms of columns of the relations represented by leaf 
nodes of the query tree, the function being given by function 
composition (nested functions) as the tree is traversed from 
leaves to root. Tree traversal is a common and Well-known 
procedure to those skilled in the art With a number of readily 
accessible programming methods enabling it. (E.g., see 
Donald Knuth, The Art of Computer Programming Vol. 1, 
Addison-Wesley, 1998, ISBN 0201485419) 

The inverse function composition is then derived so that the 
value of each column of a relation represented by a leaf node 
of the query tree can be found given a value of one or more 
columns of the relation represented by the root node of the 
query tree. This derivation can come from, for example, a 
pre-prepared table listing knoWn functions and their inverses, 
from user entry, or from inductive function derivation (from 
the function de?nition and possibly certain constraints), and 
functional combination, all techniques being standard meth 
ods Well-knoWn to those skilled in the art of computer pro 
gramming. 

In a ?nal step of the method, the Mapping so derived is 
stored in the SC and indexed by, for example, derived relation 
name, source relation name, and column name. 

In an enhancement to the preferred embodiment, user sup 
plied or system supplied names of columns (known also as 
‘renaming’, or supplying a ‘column alias’ or ‘synonym’) are 
taken into account in the mapping. For example, a vieW of the 
‘Employees’ relation might be created restricting salaries to 
those greater than $100,000. The user might then give the 
column derived from the source column ‘ESAL’ a more 

descriptive name such as ‘HIGH_SALARIES’. This 
enhancement might be implemented, for example, by simple 
substitution of the supplied name in the mapping in place of 
the original column name or symbol, or by any of a number of 
other methods that Will be obvious to those familiar With the 
art. 

In a further enhancement of the preferred embodiment, 
computed columns are taken into account and the functional 
relationship betWeen source columns and derived columns is 
recorded as part of the mapping information. Computed col 
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24 
umns are derived from one or more source columns by a 

Well-de?ned computational procedure or function that is sup 
plied by the creator of the derived relation at de?nition time or 
by a subsequent modi?cation of that de?nition. For example, 
multiplication by a conversion factor (12) might be used to 
convert monthly salaries (‘ESAL’) in the ‘Employees’ rela 
tion into yearly salaries in the derived relation. As a further 
example using the same relation, salaries might be converted 
from a numeric quantify into a character string and the con 
stant string ‘$/Y R’ might be concatenated onto the end. 

To complete the mapping betWeen derived relation col 
umns and source relation columns When the derived column 

is de?ned as a function of one or more source relation col 

umns, the inverse of the computed column function must be 
recorded or derived from the derived relation de?nition. In 

one embodiment, the inverse function is computed automati 
cally from the supplied function de?nition using, for 
example, an equation solver or functionally equivalent soft 
Ware means. In another embodiment, the inverse function 
de?nition is determined by manual means (for example, sup 
plied by a user such as the de?ner of the derived relation). In 
a further embodiment, a combination of automatic and 
manual means may be used. For example, manual means 
might be used Where automated means for a particular func 
tion Would be overly complex or computationally expensive. 
Alternatively, automated means might be used Where deter 
mination of the inverse function Would be too dif?cult or 
unreliable for implementation via manual means. In yet a 

further embodiment, an effective, alternative inverse function 
may be supplied by manual means for column derivation 
procedures that do not have a unique inverse function. In yet 
a further embodiment, the combination of the current values 
of the source and derived columns, the updated values of the 
derived columns, and the functional relationships among 
them (possibly including certain integrity constraints), are 
used in conjunction With softWare means commonly knoWn 
to those skilled in the programming arts, such as numerical 
approximation techniques, constraint programming, matrix 
algebra, linear programming, and the like, to determine 
acceptable values of the updated source columns. 

Major Steps of The Relation Update Algorithm 

In the preferred embodiment of the invention, the funda 
mental RDBMS modi?cation functions are handled uni 
formly through an identical set of steps for each transaction, 
including those Which modify the RDB directly, Whether 
using the Relational Predicates to modify the structure or the 
data elements to modify the contents. FIG. 5 is a ?owchart 
shoWing an abstraction of the major steps of the method. 
These steps are: (1) Pre-Processing (‘before image’ creation 
or identi?cation, and preparation of the query language 
request), (2) Reduction (creation of the Target Relation Predi 
cate and reWriting the expression), (3) Modi?cation (updating 
the ‘after image’ of the affected relations, an example of 
Which is given in FIG. 6); (4) Update Validation (validate the 
success of the update), and (5) After Imaging (saving the 
current ‘after image’ of each affected Base Relation for sub 
sequent processing), and (6) Final Validation (multi-relation 
constraint checks). In the preferred embodiment recursive 
rather than iterative repetition is used, particularly for travers 
ing the query tree. Each of these is further described beloW, 
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and they may be implemented in any language or using any 
functional algorithm known to those skilled in the art. 

Pre-Processing 

The obj ective of Pre-Processing is to create or identify the 
current ‘before image’ and to prepare the query language 
request. If the query language request is the initial request in 
a transaction, the current ‘before image’ is just the current 
committed image of the database; otherWise it is identi?ed as 
the most recent ‘after image’ of each Base Relation resulting 
from previous modi?cation requests Within the current trans 
action. Using methods Well-known to those familiar With the 
art, the syntax of the query language request is validated via 
the appropriate query language parser and all object refer 
ences are validated. If there are syntactic or reference errors, 
the parser handles the error in the usual manner for the par 
ticular RDBMS (e.g., returning an error to the user or request 
ing program). 

If there are no errors, the parser generates an internal rep 
resentation of the request Which, in the preferred embodiment 
is a query tree. 

If the operation associated With root node of the query tree 
is a Retrieval function, the query tree is processed by the QE 
(‘query engine’) using methods that Will be Well-known to 
those familiar With the art. 

If the operation associated With the root node of the query 
tree is a modi?cation request function (e.g., a Delete function, 
an Insert function, or an Update function), the function iden 
ti?cation is saved, the target of the function is identi?ed (the 
‘Target Relation’) and that relation denotation is pushed onto 
the Target Relation Stack (‘TRS’). 

The query tree is separated into tWo components, one rep 
resenting the target relation (the ‘Target’) to Which the modi 
?cation request is to be applied, and one being a query subtree 
representing the source relation (the ‘Source Query Tree’); 
the source relation may Well be, for example, a derived rela 
tion, a base relation, or a relational ‘constant’. The Target is 
simply the target relation reference identi?ed in the modi? 
cation request, and in particular represents the ‘ after image’ of 
the target relation. The Source Query Tree is separated into 
tWo further subquery trees, one representing a relation that is 
to be subtracted via set difference from the target relation (the 
‘Delete Query Tree’) and one that is to be added via set union 
to the target relation (the ‘Insert Query Tree’). Both the Delete 
Query Tree and the Insert Query Tree represent retrieval 
functions and each relation referenced Within them denotes 
the current ‘before image’ of that relation, this being the ‘after 
image’ of that relation resulting from the most recent modi 
?cation request (if any) Within the current transaction and 
otherWise the initial image of the relation as of the beginning 
of the transaction. The Target, the relation produced on execu 
tion of the Delete Query Tree (the ‘ Deleted Relation’), and the 
relation produced on execution of the Insert Query Tree (the 
‘Inserted Relation’) each have the same columns. 

Reduction 

The objective of Reduction is to obtain the Relation Predi 
cate corresponding to the Target, create the Target Relation 
Predicate, and to rewrite the expression so as to be able to 
apply each appropriate portion of the derived source relations 
(obtained by processing the Delete Query Tree and the Insert 
Query Tree) to one of those Base Relations from Which the 
Target is derived and in the subsequent Modi?cation Step. 
The folloWing steps are performed: 
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26 
The Relation Predicate corresponding to the Target (the 

‘Target Relation Predicate’) is obtained from the SC by 
lookup. 
The Mapping betWeen the Target and each Base Relation 

on Which it depends is obtained from the SC by lookup. 
For each Base Relation referenced in the Target Relation 

Predicate, all terms pertaining to that Base Relation are col 
lected With all single predicate variable and constant terms 
grouped together and all multi-variable terms grouped 
together (‘Augmented Base Relation Predicate’). 

For each Base Relation referenced in the Target Relation 
Predicate, all multi-relation constraints that reference the 
Base Relation are retrieved from the SC by lookup. 

Modi?cation 

The objective of Modi?cation is to apply the appropriate 
portion of the Deleted and Inserted Relations to the appropri 
ate Base Relation of those referenced in that Target Predicate. 
The folloWing steps are performed: 
The QE processes the Delete Query Tree and the Insert 

Query Tree, creating Deleted and Inserted Relations respec 
tively from the current ‘before image’ of the referenced Base 
Relations. Either Deleted Relation or Inserted Relation or 
both may be empty sets of roWs. 

For each Base Relation in the Target Predicate: 
(a) The portion of the Mapping relevant to the Base Rela 

tion is identi?ed. 
(b) The partition of the Deleted Relation corresponding to 

those columns that map to columns of the Base Relation 
is created (‘Deleted Partition’). 

(c) The partition of the Inserted Relation corresponding to 
those columns that map to columns of the Base Relation 
is created (‘Inserted Partition’). 

(d) As an optional step, any so-called ‘before actions’ trig 
gered by the relevant update function may be executed at 
this point. 

(e) The current ‘after image’ of the Base Relation (‘Base 
Relation AI’) is modi?ed through the relational opera 
tion of set difference, by removing from Base Relation 
AI the roWs in Deleted Partition. This substep is the 
‘Deletion Phase’ for this Base Relation. 

(f) The after image of the Base Relation (‘Base Relation 
AI’) is further modi?ed through the relational operation 
of union, adding to Base RelationAI the roWs in Inserted 
Partition. This substep is the ‘Insertion Phase’ for this 
Base Relation. 

(g) The logical truth of the Augmented Base Relation 
Predicate is determined for each roW in Inserted Parti 
tion. If the value thus obtained for any roW is ‘False’, the 
logical truth value of that Augmented Base Relation 
Predicate Within the Target Relation Predicate is 
replaced With the logical constant ‘(False)’ and other 
Wise is replaced With logical constant ‘(True)’. 

Update Validation 

The objective of Update Validation is to process any post 
update triggers and to con?rm that the attempted modi?ca 
tions are consistent With the de?nitions of the relations and 
any relevant constraints. For each Base Relation in the Target 
Relation Predicate, any post update triggers (as, for example, 
obtainable from the SC by lookup) on the Base Relation are 
processed and applied to the appropriate ‘after image’. 

Next, the Target Relation Predicate is evaluated for its 
logical truth value, taking into account the truth values 
obtained in prior steps, and any previously unevaluated multi 






